Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Develop New Approach to Treat Acute Liver Failure

06.08.2012
Acute liver failure is a life-threatening disease. Unfortunately, few treatment options exist, especially for advanced-stage liver failure. As a last resort a liver transplant may be the only remaining option.

Now the physician Dr. Junfeng An of the Max Delbrück Center (MDC) Berlin-Buch and Dr. Stefan Donath, a specialist in cardiology (MDC and Helios Klinikum Berlin-Buch), have developed a new treatment approach based on a mouse model.

In their current study published in (Hepatology, doi:101002/hep.25697; Vol. 56, No. 2, August 2012)*, the liver failure was reversed and the mice recovered completely. The researchers hope to soon be able to test their new approach in clinical trials.

According to an estimate published in a 2011 issue of the “Deutsche Ärzteblatt”, a professional journal for German physicians, between 200 and 500 patients suffer from acute liver failure in Germany each year. Poisoning from mushrooms or drugs is one of the main causes of this serious liver disease. In Southern Europe, Africa and Asia an acute infection with the hepatitis B virus is considered to be the most important cause.

For their treatment approach the two researchers utilized the recently discovered protein ARC (apoptosis repressor with caspase recruitment domain), which serves as the body’s own survival switch. ARC is expressed in heart and skeletal muscle and in the brain, but not in the liver. In 2006 Dr. Donath showed that apoptosis is the cause for the death of myocardial cells during heart failure, but that ARC stopped the myocardial cells from being destroyed.

Apoptosis protects the body from diseased or defective cells. In tumor cells apoptosis is deactivated, allowing the cancer cells to proliferate uncontrollably. Cancer researchers are therefore striving to utilize apoptosis to develop a treatment. They are looking for ways to reactivate apoptosis to drive the proliferating cancer cells into programmed suicide. However, in acute liver failure the problem is not too little but rather too much apoptosis. Physicians administer drugs in an attempt to halt the destruction of the cells, but only with modest success.

Now Dr. Donath and his colleagues have fused ARC to a noninfectious fragment of the human immunodeficiency virus (HIV), called TAT for short. The researchers used TAT as a shuttle to transfer this survival-switch construct into the liver. Mice with acute liver failure were given an intravenous or intraperitoneal injection with the construct. “Within just a few minutes the fusion protein TAT-ARC reached the liver of the animals and immediately began to take effect. ARC was able to stop the apoptosis of the liver cells, and all of the animals completely recovered,” Dr. Donath said. “ARC is very fast acting, and this is a huge advantage, because in an emergency there is not much time for treatment. And when the massive damage is over, the liver is quite capable of regenerating itself. In addition, ARC reaches other organs via the bloodstream, not only the liver. “Moreover,” he pointed out, “since TAT-ARC only has to be administered for a short time, a cancer risk can be largely excluded.”

During their studies, the researchers also discovered a new active mechanism of ARC, which apparently is responsible for the protective function of this protein in the liver. It inhibits the activity of a molecule (JNK), which is activated in immune cells of the liver and causes abnormal processes, whereby another molecule (TNF alpha) is released that causes the liver cells to die. ARC thus protects the liver cells from destruction. The researchers hope to soon be able to test their new approach in clinical trials with patients.

Dr. Donath and the MDC have patented the fusion protein TAT-ARC for the indication of acute liver failure. The research project was funded by the MDC Pre-Go-Bio project, an internal project fund of the MDC that supports the transfer of diagnostic or therapeutic procedures obtained in basic research into clinical applications.

*TAT-ARC protein transduction rescues mice from fulminant liver failure
Junfeng An1, Christoph Harms2,3, Gisela Lättig-Tünnemann2,3, Gernot Sellge4, Ana D. Mandiæ4, Yann Malato4, Arnd Heuser5, Matthias Endres2,3, Christian Trautwein4 & Stefan Donath1,5
1 Max-Delbrück Center for Molecular Medicine, Berlin, Germany
2 Department of Neurology, Charité-University Medicine, Berlin, Germany
3 Center for Stroke Research Berlin, Charité-University Medicine, Berlin, Germany
4 Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
5 Department of Cardiology & Nephrology, HELIOS Clinics GmbH, Berlin, Germany
Contact:
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.mdc-berlin.de/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>