Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MDC Researchers Develop New Approach to Treat Acute Liver Failure

Acute liver failure is a life-threatening disease. Unfortunately, few treatment options exist, especially for advanced-stage liver failure. As a last resort a liver transplant may be the only remaining option.

Now the physician Dr. Junfeng An of the Max Delbrück Center (MDC) Berlin-Buch and Dr. Stefan Donath, a specialist in cardiology (MDC and Helios Klinikum Berlin-Buch), have developed a new treatment approach based on a mouse model.

In their current study published in (Hepatology, doi:101002/hep.25697; Vol. 56, No. 2, August 2012)*, the liver failure was reversed and the mice recovered completely. The researchers hope to soon be able to test their new approach in clinical trials.

According to an estimate published in a 2011 issue of the “Deutsche Ärzteblatt”, a professional journal for German physicians, between 200 and 500 patients suffer from acute liver failure in Germany each year. Poisoning from mushrooms or drugs is one of the main causes of this serious liver disease. In Southern Europe, Africa and Asia an acute infection with the hepatitis B virus is considered to be the most important cause.

For their treatment approach the two researchers utilized the recently discovered protein ARC (apoptosis repressor with caspase recruitment domain), which serves as the body’s own survival switch. ARC is expressed in heart and skeletal muscle and in the brain, but not in the liver. In 2006 Dr. Donath showed that apoptosis is the cause for the death of myocardial cells during heart failure, but that ARC stopped the myocardial cells from being destroyed.

Apoptosis protects the body from diseased or defective cells. In tumor cells apoptosis is deactivated, allowing the cancer cells to proliferate uncontrollably. Cancer researchers are therefore striving to utilize apoptosis to develop a treatment. They are looking for ways to reactivate apoptosis to drive the proliferating cancer cells into programmed suicide. However, in acute liver failure the problem is not too little but rather too much apoptosis. Physicians administer drugs in an attempt to halt the destruction of the cells, but only with modest success.

Now Dr. Donath and his colleagues have fused ARC to a noninfectious fragment of the human immunodeficiency virus (HIV), called TAT for short. The researchers used TAT as a shuttle to transfer this survival-switch construct into the liver. Mice with acute liver failure were given an intravenous or intraperitoneal injection with the construct. “Within just a few minutes the fusion protein TAT-ARC reached the liver of the animals and immediately began to take effect. ARC was able to stop the apoptosis of the liver cells, and all of the animals completely recovered,” Dr. Donath said. “ARC is very fast acting, and this is a huge advantage, because in an emergency there is not much time for treatment. And when the massive damage is over, the liver is quite capable of regenerating itself. In addition, ARC reaches other organs via the bloodstream, not only the liver. “Moreover,” he pointed out, “since TAT-ARC only has to be administered for a short time, a cancer risk can be largely excluded.”

During their studies, the researchers also discovered a new active mechanism of ARC, which apparently is responsible for the protective function of this protein in the liver. It inhibits the activity of a molecule (JNK), which is activated in immune cells of the liver and causes abnormal processes, whereby another molecule (TNF alpha) is released that causes the liver cells to die. ARC thus protects the liver cells from destruction. The researchers hope to soon be able to test their new approach in clinical trials with patients.

Dr. Donath and the MDC have patented the fusion protein TAT-ARC for the indication of acute liver failure. The research project was funded by the MDC Pre-Go-Bio project, an internal project fund of the MDC that supports the transfer of diagnostic or therapeutic procedures obtained in basic research into clinical applications.

*TAT-ARC protein transduction rescues mice from fulminant liver failure
Junfeng An1, Christoph Harms2,3, Gisela Lättig-Tünnemann2,3, Gernot Sellge4, Ana D. Mandiæ4, Yann Malato4, Arnd Heuser5, Matthias Endres2,3, Christian Trautwein4 & Stefan Donath1,5
1 Max-Delbrück Center for Molecular Medicine, Berlin, Germany
2 Department of Neurology, Charité-University Medicine, Berlin, Germany
3 Center for Stroke Research Berlin, Charité-University Medicine, Berlin, Germany
4 Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
5 Department of Cardiology & Nephrology, HELIOS Clinics GmbH, Berlin, Germany
Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33

Barbara Bachtler | Max-Delbrück-Centrum
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>