Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McMaster scientists unlock secrets of diabetes drug

04.11.2013
How and why metformin needs to interact with insulin to be effective

About 120 million people around the world with Type 2 diabetes – and two million in Canada – take the drug metformin to control their disease.

While doctors know metformin needs to interact with insulin to be effective, and that it can't lower blood sugar on its own, no one has been able to explain how and why this happens.

Researchers at McMaster University are the first to unlock that mystery with their discovery metformin works on fat in the liver. Their research is published in today's issue of the journal Nature Medicine.

"The key is that metformin doesn't work to lower blood glucose by directly working on the glucose. It works on reducing harmful fat molecules in the liver, which then allows insulin to work better and lower blood sugar levels," said Greg Steinberg, associate professor in the Department of Medicine of the Michael G. DeGroote School of Medicine.

He also holds the Canada Research Chair in Metabolism and Obesity and is a co-director of the Metabolism and Childhood (MAC)-Obesity Research Program. His research team included scientists in Alberta, Australia and Scotland.

Steinberg said that most people taking metformin have a fatty liver, which is frequently caused by obesity. "Fat is likely a key trigger for pre-diabetes, causing blood sugar to start going up because insulin can't work as efficiently to stop sugar coming from the liver."

In their detective work to uncover what causes fatty liver, the scientists studied mice that have a "genetic disruption" to a single amino acid in two proteins called acetyl-CoA carboxylase (ACC).

These proteins, which are controlled by the metabolic sensor AMP-activated protein kinase, regulate fat production as well as the ability to burn fat.

Mice with the mutated proteins developed signs of fatty liver and pre-diabetes even in the absence of obesity.

"But what was really surprising was that when obese mutant mice were given metformin, the most common and inexpensive drug prescribed to Type 2 diabetics, the drug failed to lower their blood sugar levels," said Steinberg. "It indicates the way metformin works isn't by directly reducing sugar metabolism, but instead by acting to reduce fat in the liver, which then allows insulin to work better."

Morgan Fullerton, lead author of the study, added: "Unlike the majority of studies using genetic mouse models, we haven't deleted an entire protein; we have only made a very minor genetic mutation, equivalent to what might be seen in humans, thus highlighting the very precise way metformin lowers blood sugar in Type 2 Diabetes".

"This discovery offers a huge head start in finding combination therapies (and more personalized approaches) for diabetics for whom metformin isn't enough to restore their blood sugar to normal levels," said Steinberg.

Steinberg's team at McMaster was supported by grants and fellowships from the Canadian Institutes for Health Research and the Canadian Diabetes Association.

Note to Editors: Photos of Greg Steinberg and Morgan Fullerton are available here http://fhs.mcmaster.ca/media/diabetes_drug/

For further information:

Veronica McGuire
Media Relations
Faculty of Health Sciences
McMaster University
905-525-9140, ext. 22169
vmcguir@mcmaster.ca

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>