Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McMaster scientists unlock secrets of diabetes drug

04.11.2013
How and why metformin needs to interact with insulin to be effective

About 120 million people around the world with Type 2 diabetes – and two million in Canada – take the drug metformin to control their disease.

While doctors know metformin needs to interact with insulin to be effective, and that it can't lower blood sugar on its own, no one has been able to explain how and why this happens.

Researchers at McMaster University are the first to unlock that mystery with their discovery metformin works on fat in the liver. Their research is published in today's issue of the journal Nature Medicine.

"The key is that metformin doesn't work to lower blood glucose by directly working on the glucose. It works on reducing harmful fat molecules in the liver, which then allows insulin to work better and lower blood sugar levels," said Greg Steinberg, associate professor in the Department of Medicine of the Michael G. DeGroote School of Medicine.

He also holds the Canada Research Chair in Metabolism and Obesity and is a co-director of the Metabolism and Childhood (MAC)-Obesity Research Program. His research team included scientists in Alberta, Australia and Scotland.

Steinberg said that most people taking metformin have a fatty liver, which is frequently caused by obesity. "Fat is likely a key trigger for pre-diabetes, causing blood sugar to start going up because insulin can't work as efficiently to stop sugar coming from the liver."

In their detective work to uncover what causes fatty liver, the scientists studied mice that have a "genetic disruption" to a single amino acid in two proteins called acetyl-CoA carboxylase (ACC).

These proteins, which are controlled by the metabolic sensor AMP-activated protein kinase, regulate fat production as well as the ability to burn fat.

Mice with the mutated proteins developed signs of fatty liver and pre-diabetes even in the absence of obesity.

"But what was really surprising was that when obese mutant mice were given metformin, the most common and inexpensive drug prescribed to Type 2 diabetics, the drug failed to lower their blood sugar levels," said Steinberg. "It indicates the way metformin works isn't by directly reducing sugar metabolism, but instead by acting to reduce fat in the liver, which then allows insulin to work better."

Morgan Fullerton, lead author of the study, added: "Unlike the majority of studies using genetic mouse models, we haven't deleted an entire protein; we have only made a very minor genetic mutation, equivalent to what might be seen in humans, thus highlighting the very precise way metformin lowers blood sugar in Type 2 Diabetes".

"This discovery offers a huge head start in finding combination therapies (and more personalized approaches) for diabetics for whom metformin isn't enough to restore their blood sugar to normal levels," said Steinberg.

Steinberg's team at McMaster was supported by grants and fellowships from the Canadian Institutes for Health Research and the Canadian Diabetes Association.

Note to Editors: Photos of Greg Steinberg and Morgan Fullerton are available here http://fhs.mcmaster.ca/media/diabetes_drug/

For further information:

Veronica McGuire
Media Relations
Faculty of Health Sciences
McMaster University
905-525-9140, ext. 22169
vmcguir@mcmaster.ca

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>