Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another McGill/JGH breakthrough opens door to early Alzheimer's diagnosis

18.06.2009
New technique detects possible Alzheimer's biomarker in blood

A new diagnostic technique which may greatly simplify the detection of Alzheimer's disease has been discovered by researchers at McGill University and the affiliated Lady Davis Institute for Medical Research at Montreal's Jewish General Hospital (JGH). Their results were published June 8 in the Journal of Alzheimer's Disease. There is currently no accepted blood test for Alzheimer's, and the diagnosis is usually based on expensive and labour-intensive neurological, neuropsychological and neuroimaging evaluations.

Dr. Hyman Schipper and colleagues at the Lady Davis Institute and McGill University utilized a new minimally-invasive technique called near-infrared (NIR) biospectroscopy to identify changes in the blood plasma of Alzheimer's patients, changes which can be detected very early after onset, and possibly in pre-clinical stages of the disease.

Biospectroscopy is the medical form of spectroscopy, the science of detecting the composition of substances using light or other forms of energy. In NIR spectroscopy, different substances emit or reflect light at specific, detectable wavelengths.

In this study, Schipper and his colleague Dr. David Burns – head of McGill's Biomedical Laboratory for Informatics, Imaging and Spectroscopy at the department of chemistry – applied near-infrared light to blood plasma samples taken from patients with early Alzheimer's dementia, mild cognitive impairment (MCI) == an intermediate state between normal cognition and dementia -- and healthy elderly control subjects at the JGH/McGill Memory Clinic. Using this technique, the researchers were able to distinguish Alzheimer's from healthy controls with 80 per cent sensitivity (correct identification of patients with the disease) and 77 per cent specificity (correct identification of persons without the disease). A significant number of subjects with MCI tested positively with the Alzheimer group, indicating that the test may be capable of detecting Alzheimer disease even before patients' symptoms meet clinical criteria for dementia.

"We are very encouraged by these data and look forward to testing this potential diagnostic tool in larger-scale studies", said Schipper, Director of the Centre for Neurotranslational Research at the JGH and professor of neurology and medicine at McGill. Researchers have been searching for a minimally-invasive biological marker that differentiates Alzheimer's disease from normal aging and other neurodegenerative conditions for decades.

"The advent of a simple blood test for the diagnosis of early Alzheimer's", remarked Schipper, "would represent a major achievement in the management of this common disorder".

Schipper is a noted expert in brain aging and neurodegeneration, and is also medical director (neurosciences) of Molecular Biometrics Inc., a McGill technology-transfer spinoff which licensed the innovative biospectroscopy approach used in this study. In addition to Alzheimer's disease, Molecular Biometrics is currently developing this diagnostic platform for application in Parkinson's disease, in vitro fertilization and maternal-fetal health.

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>