Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MBL scientists reveal findings of World Ocean Microbe Census

05.10.2010
Project part of historic ten-year marine life census culminating in London

After a decade of joint work and scientific adventure, marine explorers from more than 80 countries, including six scientists from the Marine Biological Laboratory (MBL), today delivered the first global Census of Marine Life revealing what, where, and how much lives and hides in the world's oceans.

In one of the largest scientific collaborations ever conducted, more than 2,700 scientists spent over 9,000 days at sea on more than 540 expeditions gathering the data.

As a result of these efforts the scientists discovered that there may be up to 1 billion kinds of marine microbes—more than 100 times more diverse than plants and animals—and as many as 38,000 kinds of microbes in a typical liter of sea water.

A team of researchers from the MBL's Bay Paul Center and their colleagues in 25 countries were among the scientists contributing to the Census through their leadership of the International Census of Marine Microbes (ICoMM), a research project of the larger Census of Marine Life, which focused on the biodiversity of microscopic life forms in the world's oceans.

Over the last six years, ICoMM has amassed more than 25 million genetic sequences from microbes that swim in 1,200 sites around the Earth—from polar bays to tropical seas; from estuaries to offshore; on corals, sponges, and whale carcasses; from surface waters to deep-sea smokers.

Most of the Earth's biodiversity is microbial in nature, particularly in the oceans. For more than three billion years, these creatures have mediated critical processes that shape the planet's habitability.

In 2006, ICoMM scientists made the startling discovery that while a few microbial species dominate the oceans, most of are very low in abundance. Mitchell Sogin, director of the MBL's Bay Paul Center and ICoMM project leader called this new and unexplored realm of microbial life the "rare biosphere."

Soon after this discovery, Sogin began utilizing a powerful type of DNA sequencer that enabled the analysis of microbial diversity in many more samples, much faster. His new method, called "Pyro-Tagging," attracted additional funding to expand the census. A call to scientists got an enthusiastic and high-quality response, and 40 new labs were chosen to send marine microbial samples to the MBL for sequencing.

"From the very beginning, when we were deciding how we could do a survey of marine microbes, it has been a community effort," says Sogin. "Sample collection is a very expensive game, mostly in terms of running ships, but the submitting labs paid for that, which relieved one financial hurdle for the census." Meanwhile, at the MBL, "we realized right away that we needed bioinformatics capabilities that didn't exist" to handle the data, Sogin says. So they designed databases that allow visualization of microbial diversity in several graphical ways and that combine genetic data with information on the microbes' habitats.

Early on, ICoMM scientists also made the crucial decision to collect not just genetic data on the microbes (which would separate them by type), but also contextual information on where they were found—latitude and longitude, ocean depth, water pH, salinity, and other conditions. What they found is that all microbes are not everywhere. Despite an ability to disperse widely in the oceans, the scientists discovered that characteristic microbial communities can define different water masses in the ocean and can tell us about the health of different ecosystems.

"Believe it or not, this is unique, this coupling of (genetic) diversity data and contextual data," says Linda Amaral Zettler, MBL assistant scientist and ICoMM program manager. "The big payoff is it lets the researchers ask ecological questions about microbial populations that otherwise could not be posed."

Now is the most exciting time, when "things start to unfold, and stories are being told," says Amaral Zettler. "We think our analyses will tell us very interesting stories."

The Census of Marine Life was initiated in 2000 by the Alfred P. Sloan Foundation. During its decade the Census grew to a $650 million global exploration, involving over 670 institutions and more than 10 times the original 250 collaborators. The Census consisted of 17 projects that touch the major habitats and groups of species in the global ocean.

More than 300 leaders of the Census community met October 4 to 7 in London at the Royal Institution of Great Britain, the Royal Society, and Natural History Museum to share their decade of results and consider their implications.

A sequel to the Census will be explored during the London meetings and at the World Conference on Marine Biodiversity next September in Aberdeen, Scotland.

The MBL is a leading international, independent, nonprofit institution dedicated to discovery and to improving the human condition through creative research and education in the biological, biomedical and environmental sciences. Founded in 1888 as the Marine Biological Laboratory, the MBL is the oldest private marine laboratory in the Americas. For more information, visit www.mbl.edu.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>