Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MBL scientists reveal findings of World Ocean Microbe Census

Project part of historic ten-year marine life census culminating in London

After a decade of joint work and scientific adventure, marine explorers from more than 80 countries, including six scientists from the Marine Biological Laboratory (MBL), today delivered the first global Census of Marine Life revealing what, where, and how much lives and hides in the world's oceans.

In one of the largest scientific collaborations ever conducted, more than 2,700 scientists spent over 9,000 days at sea on more than 540 expeditions gathering the data.

As a result of these efforts the scientists discovered that there may be up to 1 billion kinds of marine microbes—more than 100 times more diverse than plants and animals—and as many as 38,000 kinds of microbes in a typical liter of sea water.

A team of researchers from the MBL's Bay Paul Center and their colleagues in 25 countries were among the scientists contributing to the Census through their leadership of the International Census of Marine Microbes (ICoMM), a research project of the larger Census of Marine Life, which focused on the biodiversity of microscopic life forms in the world's oceans.

Over the last six years, ICoMM has amassed more than 25 million genetic sequences from microbes that swim in 1,200 sites around the Earth—from polar bays to tropical seas; from estuaries to offshore; on corals, sponges, and whale carcasses; from surface waters to deep-sea smokers.

Most of the Earth's biodiversity is microbial in nature, particularly in the oceans. For more than three billion years, these creatures have mediated critical processes that shape the planet's habitability.

In 2006, ICoMM scientists made the startling discovery that while a few microbial species dominate the oceans, most of are very low in abundance. Mitchell Sogin, director of the MBL's Bay Paul Center and ICoMM project leader called this new and unexplored realm of microbial life the "rare biosphere."

Soon after this discovery, Sogin began utilizing a powerful type of DNA sequencer that enabled the analysis of microbial diversity in many more samples, much faster. His new method, called "Pyro-Tagging," attracted additional funding to expand the census. A call to scientists got an enthusiastic and high-quality response, and 40 new labs were chosen to send marine microbial samples to the MBL for sequencing.

"From the very beginning, when we were deciding how we could do a survey of marine microbes, it has been a community effort," says Sogin. "Sample collection is a very expensive game, mostly in terms of running ships, but the submitting labs paid for that, which relieved one financial hurdle for the census." Meanwhile, at the MBL, "we realized right away that we needed bioinformatics capabilities that didn't exist" to handle the data, Sogin says. So they designed databases that allow visualization of microbial diversity in several graphical ways and that combine genetic data with information on the microbes' habitats.

Early on, ICoMM scientists also made the crucial decision to collect not just genetic data on the microbes (which would separate them by type), but also contextual information on where they were found—latitude and longitude, ocean depth, water pH, salinity, and other conditions. What they found is that all microbes are not everywhere. Despite an ability to disperse widely in the oceans, the scientists discovered that characteristic microbial communities can define different water masses in the ocean and can tell us about the health of different ecosystems.

"Believe it or not, this is unique, this coupling of (genetic) diversity data and contextual data," says Linda Amaral Zettler, MBL assistant scientist and ICoMM program manager. "The big payoff is it lets the researchers ask ecological questions about microbial populations that otherwise could not be posed."

Now is the most exciting time, when "things start to unfold, and stories are being told," says Amaral Zettler. "We think our analyses will tell us very interesting stories."

The Census of Marine Life was initiated in 2000 by the Alfred P. Sloan Foundation. During its decade the Census grew to a $650 million global exploration, involving over 670 institutions and more than 10 times the original 250 collaborators. The Census consisted of 17 projects that touch the major habitats and groups of species in the global ocean.

More than 300 leaders of the Census community met October 4 to 7 in London at the Royal Institution of Great Britain, the Royal Society, and Natural History Museum to share their decade of results and consider their implications.

A sequel to the Census will be explored during the London meetings and at the World Conference on Marine Biodiversity next September in Aberdeen, Scotland.

The MBL is a leading international, independent, nonprofit institution dedicated to discovery and to improving the human condition through creative research and education in the biological, biomedical and environmental sciences. Founded in 1888 as the Marine Biological Laboratory, the MBL is the oldest private marine laboratory in the Americas. For more information, visit

Gina Hebert | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>