Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MBARI researchers discover what vampire squids eat (it's not what you think)

27.09.2012
About 100 years ago, marine biologists hauled the first vampire squid up from the depths of the sea.

Since that time, perhaps a dozen scientific papers have been published on this mysterious animal, but no one has been able to figure out exactly what it eats.


This photo, taken in the lab, shows a vampire squid swimming with one of its filaments extended (upper left corner). Image: Kim Reisenbichler © 2005 MBARI

A new paper by MBARI Postdoctoral Fellow Henk-Jan Hoving and Senior Scientist Bruce Robison shows for the first time that, unlike its relatives the octopuses and squids, which eat live prey, the vampire squid uses two thread-like filaments to capture bits of organic debris that sink down from the ocean surface into the deep sea.

It's easy to imagine the vampire squid as a nightmarish predator. It lurks in the eternal midnight of the deep sea, has a dark red body, huge blue eyes, and a cloak-like web that stretches between its eight arms. When threatened, it turns inside out, exposing rows of wicked-looking "cirri." Even its scientific name, Vampyroteuthis infernalis, means "vampire squid from hell."

In reality, the vampire squid is a soft-bodied, passive creature, about the size, shape, and color of a football. A "living fossil," it inhabits the deep waters of all the world's ocean basins at depths where there is almost no oxygen, but also relatively few predators.

A few previous researchers have caught vampire squids in nets, hauled them up to the surface, and tried to figure out what they ate by examining the contents of their stomachs. The results were generally inconclusive. The stomachs typically contained bits and pieces of tiny, shrimp-like animals, microscopic algae, and lots of slimy goo.
In a recent article in the Proceedings of the Royal Society B: Biological Sciences, Hoving and Robison show that vampire squids eat mostly "marine snow"—a mixture of dead bodies, poop, and snot. The dead bodies are the remains of microscopic algae and animals that live in the waters farther up in the ocean, but sink down into the depths after they die. The poop consists of fecal pellets from small, shrimp-like animals such as copepods or krill. The snot is mostly debris from gelatinous animals called larvaceans, which filter and consume marine snow using mucus nets.

In addition to looking at the stomach-contents of vampire squids from museum collections, the researchers used MBARI's remotely operated vehicles (ROVs) to collect live vampire squids and study their feeding habits in the laboratory. They also examined high-definition videos of vampire squids taken by MBARI's ROVs. Finally, they examined vampire squid arms and feeding filaments under optical and scanning electron microscopes.

One key to Hoving and Robison's discovery was that they used MBARI's ROVs to collect living vampire squids, and were able to keep them alive in the laboratory for months at a time. Hoving soon found that if he placed bits and pieces of microscopic animals into a tank with a vampire squid, the food particles would stick to one of the string-like filaments that the animal sometimes extends outward from its body. The vampire squid would then draw the filament through its arms, removing the particles from the filament and enveloping them in mucus. Finally, the squid would transfer the glob of mucus and particles to its mouth and consume it.

Using MBARI's video annotation and reference system (VARS), Hoving also identified every MBARI ROV dive over the last 25 years during which researchers had seen a vampire squid. He then pored over 170 of these video clips (over 23 hours of footage) to look for additional clues as to what and how the animals ate.
The videos showed that vampire squids often drift motionless in the water, extending one of their thin filaments—up to eight times as long as the animal's body—like a fishing line. In many cases, Hoving saw bits of marine snow sticking to the filament. He also saw vampire squids slowly pulling in their filaments and scraping off the accumulated marine snow using their arms. Other vampire squids had globs of marine snow and mucus dangling from their mouths.

Under the microscope, the researchers observed that the vampire squid's suckers were covered with cells that produce mucus, which the animal apparently uses to collect and glue together individual particles of marine snow. Their filaments are covered with tiny hairs and a dense net of sensory nerves, which makes them extremely sensitive to touch.

When looking at vampire squids' stomach contents, the researchers did not see bones or pieces of individual animals that would indicate the vampire squids had captured live prey. Instead, they saw mostly amorphous bits of broken-up organic debris. The only prey they saw that might have been eaten alive were the remains of tiny crustaceans that sometimes "hitchhike" on sinking mucus nets or clumps of the marine snow.

After considering all the evidence, Hoving and Robison conclude that, "the vampire squid's filament is likely a multifunctional organ that is deployed to detect and capture detrital matter but at the same time may detect the presence of predators and perhaps small living prey."
The organic detritus that forms the bulk of the vampire squid's diet would not seem to be particularly nutritious. However vampire squids complement their frugal diet with an extremely energy-efficient lifestyle and unique adaptations. Their bodies are neutrally buoyant, so they don't have to expend energy to stay at a particular depth. Even better, they don't have to swim to find food, but simply extend their filaments to collect food that drifts past them.

Finally, vampire squids don't have to expend much energy avoiding predators, because they live at depths where there is so little oxygen that few other animals can survive. Conveniently, these deep, low-oxygen zones are often found where there is an abundance of life near the sea surface, which in turn creates lots of marine snow for vampire squids to eat. Hoving explains, "Because of its unique adaptations, the vampire squid is able to permanently and successfully inhabit the center of the oxygen minimum zone, an otherwise hostile environment where the vampire squid's predators are few, and its food is abundant."

Even though Hoving and Robison's research shows that the vampire squid is a "detritivore" rather than an active predator, its sinister appearance and stealthy habits will no doubt continue to fascinate both researchers and the general public.

This research was sponsored by grants from the David and Lucile Packard Foundation and the Netherlands Organization for Scientific Research (NWO).
For additional information, video, or images relating to this news release, please contact:

Kim Fulton-Bennett
831-775-1835, kfb@mbari.org
Original journal article:
Hendrik J. T. Hoving and Bruce H. Robison, Vampire squid: detritivores in the oxygen minimum zone Proc. R. Soc. B rspb20121357; published ahead of print September 26, 2012, doi:10.1098/rspb.2012.1357 1471-2954

Kim Fulton-Bennett | EurekAlert!
Further information:
http://www.mbari.org
http://www.mbari.org/news/news_releases/2012/vampfood/vampfood-release.html

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>