Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Researchers Provide Atomic View of a Histone Chaperone

05.03.2012
Mayo Clinic researchers have gained insights into the function of a member of a family of specialized proteins called histone chaperones.

Using nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography, they have determined the 3-D structure and interactions of the histone chaperone Rtt106 down to the atomic details. The findings are published in the journal Nature.

“The interactions we described are important for gene silencing and the DNA damage response,” says senior author Georges Mer, Ph.D., a Mayo Clinic structural biologist. “This is exciting because our newfound knowledge will help us better understand these fundamental cellular processes.”

In cells, our DNA is part of a structure called chromatin, comprised of proteins, the majority called histones, which are wrapped with the DNA. Associated with the histones is another group of proteins called histone chaperones, which promote the proper assembly or disassembly of the chromatin during the times our DNA is replicated or repaired when damaged. Their dysfunction has been linked to cancer, aging and other diseases.

The Discovery
Before this Mayo study, scientists knew that the histone chaperone Rtt106 helped in the deposition of histones -- specifically, a complex of histones H3 and H4 -- onto the replicating DNA. They did not understand how Rtt106 does this, given that it does not possess any of the known requirements. Histone H3 is in a modified form where one of its amino acids, lysine 56, is acetylated. Rtt106 does not seem to have an acetylated lysine reader domain.

Mayo researchers discovered two novel domains in Rtt106 that take on this role. One, termed the homodimerization domain, allows two molecules of Rtt106 to be linked so they can cooperate in binding histones H3 and H4. The other, called the double PH domain, is responsible for sensing the acetylated lysine of H3 and further reinforces the interaction. The combined actions of the two domains of Rtt106 enable it to perform the chaperoning function efficiently and properly. This is the first time anyone has described this mode of specific association between a histone chaperone and a modified histone complex.

Other authors of the study are Dan Su, M.D., Ph.D.; Qi Hu, Ph.D.; Qing Li, Ph.D.; James Thompson, Ph.D.; Gaofeng Cui, Ph.D.; Ahmed Fazly, Ph.D.; Brian Davies, Ph.D.; Maria Victoria Botuyan, Ph.D.; and Zhiguo Zhang, Ph.D.; all of Mayo Clinic. The study was a collaborative effort between the groups of Dr. Mer and Dr. Zhang and was funded by the National Institutes of Health and Mayo Clinic.

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit www.mayoclinic.org/about/ and www.mayoclinic.org/news.

Robert Nellis | Newswise Science News
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>