Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo-led researchers discover genetic variants modifying breast cancer risk

20.09.2010
Individuals with disrupting mutations in the BRCA1 gene are known to be at substantially increased risk of breast cancer throughout their lives. Now, discoveries from an international research team led by Mayo Clinic researchers show that some of those persons may possess additional genetic variants that modify their risk. These new findings enhancing individualized medicine appear in the current Nature Genetics.

"These findings should be useful in helping determine individual risk for breast cancer in BRCA1 carriers," says Fergus Couch, Ph.D., Mayo investigator and senior author of the study. "It also provides insights into hormone-receptor-negative breast cancer in the general population."

Genetic mutations in the BRCA1 gene give carriers of these mutations an increased risk for developing breast cancer. To determine if any genetic variations would modify or alter this risk among large populations of the mutation carriers, the researchers conducted genome-wide association studies (GWAS) that ultimately spanned 20 research centers in 11 different countries.

They first studied 550,000 genetic alterations from across the human genome in 1,193 carriers of BRCA1 mutations under age 40 who had invasive breast cancer and compared the alterations to those in 1,190 BRCA1 carriers of similar age without breast cancer. The 96 single nucleotide polymorphisms (SNPs) discovered were subsequently studied in a larger sample population of roughly 3,000 BRCA1 carriers with breast cancer and 3,000 carriers without cancer. Researchers found five SNPs associated with breast cancer risk in a region of chromosome 19p13.

Further studies of those SNPs in 6,800 breast cancer patients without BRCA1 mutations showed associations with estrogen-receptor-negative disease, meaning cancer in which tumors don't possess estrogen receptors. In another GWAS involving 2,300 patients, the five SNPs also were associated with triple-negative breast cancer, an aggressive form of the disease accounting for about 12 percent of all breast cancer. Triple-negative tumors don't express genes for estrogen or progesterone receptors or Her2/neu. The researchers also found that these SNPs were not related to risk for ovarian cancer in BRCA1 mutations carriers.

By locating these risk-modifying SNPs, the researchers have provided a target for better understanding the mechanisms behind the development of breast cancer. Furthermore, when combined with other risk-modifying SNPs that remain to be identified in ongoing studies by this group, it may be possible to identify certain BRCA1 carriers who are at lower risk of cancer and, also, carriers at particularly elevated risk of cancer who may decide to change their approach to cancer prevention.

Support for the research came from the Breast Cancer Research Foundation, Susan G. Komen for the Cure, the National Institutes of Health, and Cancer Research UK. In addition to first author Antonis Antoniou, Ph.D., of Cambridge University, over 180 individuals and several consortia contributed to the research and are co-authors.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>