Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo-led researchers discover genetic variants modifying breast cancer risk

Individuals with disrupting mutations in the BRCA1 gene are known to be at substantially increased risk of breast cancer throughout their lives. Now, discoveries from an international research team led by Mayo Clinic researchers show that some of those persons may possess additional genetic variants that modify their risk. These new findings enhancing individualized medicine appear in the current Nature Genetics.

"These findings should be useful in helping determine individual risk for breast cancer in BRCA1 carriers," says Fergus Couch, Ph.D., Mayo investigator and senior author of the study. "It also provides insights into hormone-receptor-negative breast cancer in the general population."

Genetic mutations in the BRCA1 gene give carriers of these mutations an increased risk for developing breast cancer. To determine if any genetic variations would modify or alter this risk among large populations of the mutation carriers, the researchers conducted genome-wide association studies (GWAS) that ultimately spanned 20 research centers in 11 different countries.

They first studied 550,000 genetic alterations from across the human genome in 1,193 carriers of BRCA1 mutations under age 40 who had invasive breast cancer and compared the alterations to those in 1,190 BRCA1 carriers of similar age without breast cancer. The 96 single nucleotide polymorphisms (SNPs) discovered were subsequently studied in a larger sample population of roughly 3,000 BRCA1 carriers with breast cancer and 3,000 carriers without cancer. Researchers found five SNPs associated with breast cancer risk in a region of chromosome 19p13.

Further studies of those SNPs in 6,800 breast cancer patients without BRCA1 mutations showed associations with estrogen-receptor-negative disease, meaning cancer in which tumors don't possess estrogen receptors. In another GWAS involving 2,300 patients, the five SNPs also were associated with triple-negative breast cancer, an aggressive form of the disease accounting for about 12 percent of all breast cancer. Triple-negative tumors don't express genes for estrogen or progesterone receptors or Her2/neu. The researchers also found that these SNPs were not related to risk for ovarian cancer in BRCA1 mutations carriers.

By locating these risk-modifying SNPs, the researchers have provided a target for better understanding the mechanisms behind the development of breast cancer. Furthermore, when combined with other risk-modifying SNPs that remain to be identified in ongoing studies by this group, it may be possible to identify certain BRCA1 carriers who are at lower risk of cancer and, also, carriers at particularly elevated risk of cancer who may decide to change their approach to cancer prevention.

Support for the research came from the Breast Cancer Research Foundation, Susan G. Komen for the Cure, the National Institutes of Health, and Cancer Research UK. In addition to first author Antonis Antoniou, Ph.D., of Cambridge University, over 180 individuals and several consortia contributed to the research and are co-authors.

Robert Nellis | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>