Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers identify enzyme linked to prostate cancer

18.12.2012
Researchers at Mayo Clinic's campus in Florida have identified an enzyme specifically linked to aggressive prostate cancer, and have also developed a compound that inhibits the ability of this molecule to promote the metastatic spread of the cancer.

Their study, published in the Dec. 18 online edition of Molecular Cancer Research, is the first to link the enzyme PRSS3 to prostate cancer.

"This molecule is a protease, which means it digests other molecules. Our data suggests PRSS3 activity changes the environment around prostate cancer cells — perhaps by freeing them from surrounding tissue — to promote malignancy and invasiveness," says the study's senior investigator, Evette Radisky, Ph.D., a cancer biologist in the Mayo Clinic Cancer Center. "I don't think PRSS3 is the only factor involved in driving aggressive prostate cancer, but it may be significant for a certain subset of this cancer — the kind that is potentially lethal," she says.

Dr. Radisky and five colleagues at Mayo Clinic in Florida made the discovery by investigating publicly available databases, derived from clinical studies, which contain data on molecules that are upregulated — irregularly switched on — in cancer. They had previously discovered a link between the protease and the earlier stages of breast cancer.

The research team wanted to see if any other cancer abnormally expresses this protease, and at what stages so they mined multiple databases.

"The link between PRSS3 activity and aggressive prostate cancer jumped out at us," Dr. Radisky says. "We found a definitive trend of increasing PRSS3 expression with cancer progression."

Then, in mice models of prostate cancer, the researchers demonstrated that expression of the protease was critical for prostate cancer metastasis. Cancer did not spread in mice in which PRSS3 was silenced.

The group had earlier crystallized the structure of the PRSS3 protease, and discovered a place on the enzyme where a small protein therapeutic could bind to plug up the "scissoring" action of the molecule.

"The protease has an active site that breaks down other proteins, and our inhibiting agent sticks to the site, shutting it down," Dr. Radisky says.

The researchers say their finding suggests several possible future clinical applications.

We might be able to test prostate cancer patients for the presence of this molecule, to help identify those who are most at risk for aggressive cancer," she says.

And the researchers' prototype drug provides a template upon which to build an agent that can be used to treat these same patients, Dr. Radisky says. "Our inhibitor does not have the characteristics we need for a clinically useful drug. But it puts us on the right path to develop one."

Other study authors are Alexandria Hockla, Erin Miller, Moh'd A. Salameh, Ph.D., John A. Copland, Ph.D., and Derek Radisky, Ph.D., all from the Department of Cancer Biology at the Mayo Clinic campus in Florida. The authors declare no conflicts of interest.

The study was funded by grants from the Bankhead-Coley Florida Biomedical Research Program, the Department of Defense, and the National Cancer Institute.

About Mayo Clinic Cancer Center

As a leading institution funded by the National Cancer Institute, Mayo Clinic Cancer Center conducts basic, clinical and population science research, translating discoveries into improved methods for prevention, diagnosis, prognosis and therapy. For information on cancer clinical trials, call 507-538-7623.

About Mayo Clinic

Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit www.mayoclinic.com and www.mayoclinic.org/news.

Journalists can become a member of the Mayo Clinic News Network for the latest health, science and research news and access to video, audio, text and graphic elements that can be downloaded or embedded.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>