Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers identify enzyme linked to prostate cancer

18.12.2012
Researchers at Mayo Clinic's campus in Florida have identified an enzyme specifically linked to aggressive prostate cancer, and have also developed a compound that inhibits the ability of this molecule to promote the metastatic spread of the cancer.

Their study, published in the Dec. 18 online edition of Molecular Cancer Research, is the first to link the enzyme PRSS3 to prostate cancer.

"This molecule is a protease, which means it digests other molecules. Our data suggests PRSS3 activity changes the environment around prostate cancer cells — perhaps by freeing them from surrounding tissue — to promote malignancy and invasiveness," says the study's senior investigator, Evette Radisky, Ph.D., a cancer biologist in the Mayo Clinic Cancer Center. "I don't think PRSS3 is the only factor involved in driving aggressive prostate cancer, but it may be significant for a certain subset of this cancer — the kind that is potentially lethal," she says.

Dr. Radisky and five colleagues at Mayo Clinic in Florida made the discovery by investigating publicly available databases, derived from clinical studies, which contain data on molecules that are upregulated — irregularly switched on — in cancer. They had previously discovered a link between the protease and the earlier stages of breast cancer.

The research team wanted to see if any other cancer abnormally expresses this protease, and at what stages so they mined multiple databases.

"The link between PRSS3 activity and aggressive prostate cancer jumped out at us," Dr. Radisky says. "We found a definitive trend of increasing PRSS3 expression with cancer progression."

Then, in mice models of prostate cancer, the researchers demonstrated that expression of the protease was critical for prostate cancer metastasis. Cancer did not spread in mice in which PRSS3 was silenced.

The group had earlier crystallized the structure of the PRSS3 protease, and discovered a place on the enzyme where a small protein therapeutic could bind to plug up the "scissoring" action of the molecule.

"The protease has an active site that breaks down other proteins, and our inhibiting agent sticks to the site, shutting it down," Dr. Radisky says.

The researchers say their finding suggests several possible future clinical applications.

We might be able to test prostate cancer patients for the presence of this molecule, to help identify those who are most at risk for aggressive cancer," she says.

And the researchers' prototype drug provides a template upon which to build an agent that can be used to treat these same patients, Dr. Radisky says. "Our inhibitor does not have the characteristics we need for a clinically useful drug. But it puts us on the right path to develop one."

Other study authors are Alexandria Hockla, Erin Miller, Moh'd A. Salameh, Ph.D., John A. Copland, Ph.D., and Derek Radisky, Ph.D., all from the Department of Cancer Biology at the Mayo Clinic campus in Florida. The authors declare no conflicts of interest.

The study was funded by grants from the Bankhead-Coley Florida Biomedical Research Program, the Department of Defense, and the National Cancer Institute.

About Mayo Clinic Cancer Center

As a leading institution funded by the National Cancer Institute, Mayo Clinic Cancer Center conducts basic, clinical and population science research, translating discoveries into improved methods for prevention, diagnosis, prognosis and therapy. For information on cancer clinical trials, call 507-538-7623.

About Mayo Clinic

Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit www.mayoclinic.com and www.mayoclinic.org/news.

Journalists can become a member of the Mayo Clinic News Network for the latest health, science and research news and access to video, audio, text and graphic elements that can be downloaded or embedded.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>