Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic Researchers Identify Enzyme Involved in Deadly Brain Tumors

18.01.2013
Enzyme possible key to developing tissue regeneration therapy

One of the most common types of brain tumors in adults, glioblastoma multiforme, is one of the most devastating. Even with recent advances in surgery, radiation and chemotherapy, the aggressive and invasive tumors become resistant to treatment, and median survival of patients is only about 15 months.

In a study published in Neuro-Oncology, researchers at Mayo Clinic identify an important association between the naturally occurring enzyme Kallikrein 6, also known as KLK6, and the malignant tumors.

"Our study of Kallikrein 6 showed that higher levels of this enzyme in the tumor are negatively associated with patient survival, and that the enzyme functions by promoting the survival of tumor cells," says senior author Isobel Scarisbrick, Ph.D., of Mayo Clinic's Department of Physical Medicine and Rehabilitation.

The findings introduce a new avenue for potential treatment of deadly glioblastomas: targeting the function of KLK6. The tumor cells became more susceptible to treatment when researchers blocked the receptors where the KLK6 enzyme can dock and initiate the survival signal.

Researchers looked at 60 samples of grade IV astrocytomas — also known at this stage as glioblastomas — as well as less aggressive grade III astrocytomas. They found the highest levels of KLK6 were present in the most severe grade IV tumors. Looking at the tumor samples, researchers found higher levels of KLK6 associated with shorter patient survival. Those with the highest levels lived 276 days, and those with lower levels lived 408 days.

"This suggests that the level of KLK6 in the tumor provides a prognosticator of patient survival," Dr. Scarisbrick says.

The group also investigated the mechanism of the enzyme to determine whether it plays a significant role in tumor growth. Researchers also found glioblastoma cells treated in a petri dish with KLK6 become resistant to radiation and chemotherapy treatment.

"Our results show that KLK6 functions like a hormone, activating a signaling cascade within the cell that promotes tumor cell survival," Dr. Scarisbrick says. "The higher the level of the enzyme, the more resistant the tumors are to conventional therapies."

The study is the latest step in Dr. Scarisbrick's investigations of KLK6 in nervous system cells known as astrocytes. Glioblastomas arise from astrocytes that have grown out of control. Her lab has shown that KLK6 also plays a role in the perseverance of inflammatory immune cells that occur in multiple sclerosis and in aberrant survival of T-lymphocyte leukemia cell lines.

"Our findings in glioma affirm KLK6 as part of a fundamental physiological mechanism that's relevant to multiple diseases and have important implications for understanding principles of tissue regeneration," she says. "Targeting KLK6 signaling may be a key to the development of treatments for pathologies in which it is necessary to intervene to regulate cell survival and tissue regeneration in a therapeutic fashion. Ultimately, we might be able to harness the power of KLK6 for the repair of damaged organs."

The study was funded by a National Institutes of Health Brain Tumor SPORE grant, an NIH Mayo Neuro-oncology Training Grant and a grant from the National Institute of Neurological Diseases and Stroke. Other authors include Kristen Drucker, Ph.D., Alex Paulsen, Caterina Giannini, M.D., Ph.D., Paul Decker, Joon Uhm, M.D., Brian O'Neill, M.D., and Robert Jenkins, M.D., Ph.D., all of Mayo Clinic; and Sachiko Blaber and Michael Blaber, Ph.D., of Florida State University.

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit MayoClinic.com or MayoClinic.org/news.

Journalists can become a member of the Mayo Clinic News Network for the latest health, science and research news and access to video, audio, text and graphic elements that can be downloaded or embedded.

Bryan Anderson | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: Brain KLK6 MayoClinic brain tumor enzyme immune cell tissue regeneration tumor cells

More articles from Life Sciences:

nachricht Stress triggers key molecule to halt transcription of cell's genetic code
28.05.2015 | Stowers Institute for Medical Research

nachricht Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery
28.05.2015 | University of Waterloo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>