Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic Researchers Identify Enzyme Involved in Deadly Brain Tumors

18.01.2013
Enzyme possible key to developing tissue regeneration therapy

One of the most common types of brain tumors in adults, glioblastoma multiforme, is one of the most devastating. Even with recent advances in surgery, radiation and chemotherapy, the aggressive and invasive tumors become resistant to treatment, and median survival of patients is only about 15 months.

In a study published in Neuro-Oncology, researchers at Mayo Clinic identify an important association between the naturally occurring enzyme Kallikrein 6, also known as KLK6, and the malignant tumors.

"Our study of Kallikrein 6 showed that higher levels of this enzyme in the tumor are negatively associated with patient survival, and that the enzyme functions by promoting the survival of tumor cells," says senior author Isobel Scarisbrick, Ph.D., of Mayo Clinic's Department of Physical Medicine and Rehabilitation.

The findings introduce a new avenue for potential treatment of deadly glioblastomas: targeting the function of KLK6. The tumor cells became more susceptible to treatment when researchers blocked the receptors where the KLK6 enzyme can dock and initiate the survival signal.

Researchers looked at 60 samples of grade IV astrocytomas — also known at this stage as glioblastomas — as well as less aggressive grade III astrocytomas. They found the highest levels of KLK6 were present in the most severe grade IV tumors. Looking at the tumor samples, researchers found higher levels of KLK6 associated with shorter patient survival. Those with the highest levels lived 276 days, and those with lower levels lived 408 days.

"This suggests that the level of KLK6 in the tumor provides a prognosticator of patient survival," Dr. Scarisbrick says.

The group also investigated the mechanism of the enzyme to determine whether it plays a significant role in tumor growth. Researchers also found glioblastoma cells treated in a petri dish with KLK6 become resistant to radiation and chemotherapy treatment.

"Our results show that KLK6 functions like a hormone, activating a signaling cascade within the cell that promotes tumor cell survival," Dr. Scarisbrick says. "The higher the level of the enzyme, the more resistant the tumors are to conventional therapies."

The study is the latest step in Dr. Scarisbrick's investigations of KLK6 in nervous system cells known as astrocytes. Glioblastomas arise from astrocytes that have grown out of control. Her lab has shown that KLK6 also plays a role in the perseverance of inflammatory immune cells that occur in multiple sclerosis and in aberrant survival of T-lymphocyte leukemia cell lines.

"Our findings in glioma affirm KLK6 as part of a fundamental physiological mechanism that's relevant to multiple diseases and have important implications for understanding principles of tissue regeneration," she says. "Targeting KLK6 signaling may be a key to the development of treatments for pathologies in which it is necessary to intervene to regulate cell survival and tissue regeneration in a therapeutic fashion. Ultimately, we might be able to harness the power of KLK6 for the repair of damaged organs."

The study was funded by a National Institutes of Health Brain Tumor SPORE grant, an NIH Mayo Neuro-oncology Training Grant and a grant from the National Institute of Neurological Diseases and Stroke. Other authors include Kristen Drucker, Ph.D., Alex Paulsen, Caterina Giannini, M.D., Ph.D., Paul Decker, Joon Uhm, M.D., Brian O'Neill, M.D., and Robert Jenkins, M.D., Ph.D., all of Mayo Clinic; and Sachiko Blaber and Michael Blaber, Ph.D., of Florida State University.

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit MayoClinic.com or MayoClinic.org/news.

Journalists can become a member of the Mayo Clinic News Network for the latest health, science and research news and access to video, audio, text and graphic elements that can be downloaded or embedded.

Bryan Anderson | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: Brain KLK6 MayoClinic brain tumor enzyme immune cell tissue regeneration tumor cells

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>