Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic Researchers Find Gene They Believe is Key to Kidney Cancer

21.05.2010
Researchers at Mayo Clinic's campus in Florida have discovered a key gene that, when turned off, promotes the development of common kidney cancer. Their findings suggest that a combination of agents now being tested in other cancers may turn the gene back on, providing a much-needed therapy for the difficult-to-treat cancer.

Clear cell renal cell carcinoma (ccRCC), the most common kind of kidney cancer, accounts for just 3 percent of all cancers in the United States, but is the sixth leading cause of cancer death. No current treatment has had a measurable effect on the spread of the cancer, oncologists say.

In the May 20, 2010 issue of Oncogene, researchers describe a gene called GATA3 that has been silenced in ccRCC and is a key gene also lost in breast cancer. GATA3 controls many genes and proteins that regulate cell growth, and one of them, a receptor known as the type III transforming growth factor-â receptor (TâRIII), is absent in a number of cancers.

According to the study's senior investigator, John Copland, Ph.D., a cancer biologist at the Mayo Clinic campus at Florida, these findings will surprise many in the cancer field. "Cancer researchers know that GATA3 is essential for immune T cell development and function," he says. "As well, very recent studies show that GATA3 is also critical to breast cancer development, where GATA3 expression is limited to mammary luminal epithelial cells. GATA3 is lost during breast cancer progression and its loss is a strong predictor of poor clinical outcome in luminal breast cancer. GATA3 also plays an important role in renal development and differentiation during embryogenesis, but little is known about the role of GATA3 in the adult human kidney."

"Now it looks like GATA3 regulates the expression of genes that are critical to cancer control in the kidney, and silencing it appears to be very important to the growth of kidney cancer and probably to others tumors, as well," he says. "No one could have guessed that would be the case in kidney cancer. This is a completely novel finding."

Adds first author Simon Cooper, Ph.D., a molecular biologist at Mayo Clinic, "This research is particularly exciting because GATA3 may be a good therapeutic target. Two classes of drugs known as histone methyltransferase inhibitors and histone deacetylase inhibitors are designed to remove the brakes that cancer puts on key genes, like GATA3, that are silenced during cancer."

The researchers say that GATA3 is silenced through methylation of the GATA3 gene, a chemical modification that commonly occurs in cancer due to a widespread genetic instability that activates methyltransferases and histone deacetylases (HDACs). This process occurs when methyltransferase and HDAC enzymes work together to attach or remove chemical groups from genes, effectively silencing them. The drugs used in this study work together to reverse methylation and deacetylation.

The HDAC inhibitor used in this study is currently being examined in clinical trials for other cancers. It is similar to HDAC inhibitors that are already approved by the Food and Drug Administration for use in cutaneous T cell lymphoma. Dr. Cooper says that data from this study proves that these drugs synergize to restore GATA3 function, but they still need to be tested in kidney cancer animal models to provide a rationale for proceeding to a cancer clinical trial in kidney cancer.

This study results from a 2003 discovery by Dr. Copland and his team that the loss of TâRIII plays a critical role in kidney cancer cell growth. TâRIII appears to be a tumor suppressor gene that blocks tumor growth. Although it is well known that the ligand, transforming growth factor beta (TGF-â) binds TâRIII on the cell membrane, TâRIII's growth inhibitory activity is TGF-â independent, another novel finding.

They found that TâRIII was not expressed in patient ccRCC tissues that they examined; in the laboratory, when it was re-expressed in human ccRCC cell lines, the kidney cancer cells died. "We believe TâRIII is a tumor suppressor which is lost in a number of cancers," says Dr. Copland. "In ccRCC, every patient tumor that we have examined has lost the expression of this receptor as well as GATA3."

"Interestingly, the TâRIII gene is regulated, not by one, but two different promoters. Our team is the first to clone the human TâRIII promoters which allowed us to delete regions and discern how TbRIII expression is regulated," explains Dr. Cooper. They eventually located a region that led to the discovery that GATA3 positively regulates TbRIII expression in normal renal cells. This is the first transcription factor discovered to positively regulate the human TâRIII gene.

"Now that we understand why TâRIII is not expressed in kidney cancer, we can potentially turn the gene back on by reactivating GATA3 using methyltransferase and HDAC inhibitors," Dr. Copland says.

Researchers from Duke University Medical Center, led by Gerard Blobe, M.D., Ph.D., and The University of Texas MD Anderson Cancer Center, led by Christopher Wood, M.D., also participated in the study, which was funded in part by the National Institutes of Health, the Dr. Ellis and Dona Brunton Rare Cancer Research Fund and a gift from Susan A. Olde.

About Mayo Clinic
Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,700 physicians, scientists and researchers, and 50,100 allied health staff work at Mayo Clinic, which has campuses in Rochester, Minn; Jacksonville, Fla; and Scottsdale/Phoenix, Ariz.; and community-based providers in more than 70 locations in southern Minnesota., western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.org/news2010-jax/5811.html

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>