Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic Researchers Find Drug Duo Kills Chemotherapy-resistant Ovarian Cancer Cells

08.12.2011
The use of two drugs never tried in combination before in ovarian cancer resulted in a 70 percent destruction of cancer cells already resistant to commonly used chemotherapy agents, say researchers at Mayo Clinic in Florida.

Their report, published online in Gynecologic Oncology, suggests that this combination (ixabepilone and sunitinib), might offer a much needed treatment option for women with advanced ovarian cancer. When caught at late stages, ovarian cancer is often fatal because it progressively stops responding to the chemotherapy drugs used to treat it.

"Women die from ovarian cancer because their tumors become resistant to chemotherapy, so a drug that might be able to reduce that resistance — which may be what this combination of agents is doing — would be a boon to treatment of this difficult cancer," says study co-author Gerardo Colon-Otero, M.D., a hematologist-oncologist who cares for ovarian cancer patients.

The finding also highlights the importance of the role of a molecule, RhoB, that the researchers say is activated by the drug duo. The study's senior investigator, cancer biologist John Copland, Ph.D., has identified RhoB as a key modulator for drug response in other tumor types, but says its role in ovarian cancer was unknown before this study.

"Now we find that with this combination of drugs, RhoB is increased and cells die," he says.

The study was possible because Dr. Copland and his laboratory colleagues, including co-author Laura Marlow, created and characterized two new ovarian laboratory cell lines. They were derived from tumor tissue specimens taken from a patient with metastatic cancer whose tumors had stopped responding to multiple chemotherapy drugs.

Dr. Colon-Otero suggested trying the two drugs on the new cells lines. Neither drug is approved for use in ovarian cancer. Ixabepilone is a chemotherapy drug that, like other taxane drugs, targets the microtubules and stops dividing cells from forming a spindle. It has been approved for use in metastatic breast cancer. Sunitinib, approved for use in kidney cancer, belongs to a class of tyrosine kinase inhibitors that stops growth signals from reaching inside cancer cells.

Prakash Vishnu, M.D., a former fellow at Mayo Clinic in Florida who is now at the Floyd and Delores Jones Cancer Institute in Virginia Mason Medical Center, Seattle, is the first author of the article and led the study under the mentorship of Drs. Colon-Otero and Copland. He found that in both cell lines, cell kill was significantly greater with the combination than use of either drug alone. For example, in chemotherapy-resistant lines (where this potential combination therapy will most likely be used), ixabepilone alone killed up to 30 percent of cells, and the rate for suntinib was up to 10 percent. When the agents were used together, the kill rate was 70 percent.

Dr. Copland said that RhoB is a potential biomarker that may help identify patients who might benefit from such combination therapy.

The study was funded by Mayo Clinic. Additional co-authors included Joseph Santoso, M.D., of the University of Tennessee and Kevin Wu, M.D., of Mayo Clinic, as well as undergraduate students Gregory Kennedy and William Kennedy from Dr. Copland's laboratory. The researchers declare no conflicts of interest.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>