Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mayo Clinic Researchers Find Drug Duo Kills Chemotherapy-resistant Ovarian Cancer Cells

The use of two drugs never tried in combination before in ovarian cancer resulted in a 70 percent destruction of cancer cells already resistant to commonly used chemotherapy agents, say researchers at Mayo Clinic in Florida.

Their report, published online in Gynecologic Oncology, suggests that this combination (ixabepilone and sunitinib), might offer a much needed treatment option for women with advanced ovarian cancer. When caught at late stages, ovarian cancer is often fatal because it progressively stops responding to the chemotherapy drugs used to treat it.

"Women die from ovarian cancer because their tumors become resistant to chemotherapy, so a drug that might be able to reduce that resistance — which may be what this combination of agents is doing — would be a boon to treatment of this difficult cancer," says study co-author Gerardo Colon-Otero, M.D., a hematologist-oncologist who cares for ovarian cancer patients.

The finding also highlights the importance of the role of a molecule, RhoB, that the researchers say is activated by the drug duo. The study's senior investigator, cancer biologist John Copland, Ph.D., has identified RhoB as a key modulator for drug response in other tumor types, but says its role in ovarian cancer was unknown before this study.

"Now we find that with this combination of drugs, RhoB is increased and cells die," he says.

The study was possible because Dr. Copland and his laboratory colleagues, including co-author Laura Marlow, created and characterized two new ovarian laboratory cell lines. They were derived from tumor tissue specimens taken from a patient with metastatic cancer whose tumors had stopped responding to multiple chemotherapy drugs.

Dr. Colon-Otero suggested trying the two drugs on the new cells lines. Neither drug is approved for use in ovarian cancer. Ixabepilone is a chemotherapy drug that, like other taxane drugs, targets the microtubules and stops dividing cells from forming a spindle. It has been approved for use in metastatic breast cancer. Sunitinib, approved for use in kidney cancer, belongs to a class of tyrosine kinase inhibitors that stops growth signals from reaching inside cancer cells.

Prakash Vishnu, M.D., a former fellow at Mayo Clinic in Florida who is now at the Floyd and Delores Jones Cancer Institute in Virginia Mason Medical Center, Seattle, is the first author of the article and led the study under the mentorship of Drs. Colon-Otero and Copland. He found that in both cell lines, cell kill was significantly greater with the combination than use of either drug alone. For example, in chemotherapy-resistant lines (where this potential combination therapy will most likely be used), ixabepilone alone killed up to 30 percent of cells, and the rate for suntinib was up to 10 percent. When the agents were used together, the kill rate was 70 percent.

Dr. Copland said that RhoB is a potential biomarker that may help identify patients who might benefit from such combination therapy.

The study was funded by Mayo Clinic. Additional co-authors included Joseph Santoso, M.D., of the University of Tennessee and Kevin Wu, M.D., of Mayo Clinic, as well as undergraduate students Gregory Kennedy and William Kennedy from Dr. Copland's laboratory. The researchers declare no conflicts of interest.

Kevin Punsky | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>