Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic Researchers Discover Genetic Markers for Alcoholism Recovery

05.11.2014

In an international study, Mayo Clinic researchers and collaborators have identified genetic markers that may help in identifying individuals who could benefit from the alcoholism treatment drug acamprosate. The findings, published in the journal Translational Psychiatry, show that patients carrying these genetic variants have longer periods of abstinence during the first three months of acamprosate treatment.

Acamprosate is a commonly prescribed drug used to aid patients in recovery from alcoholism. Mayo researchers studied the association between variation in candidate genes and the length of sobriety in alcohol-dependent patients treated with acamprosate in community-based programs.

They found that, when other environmental and physiological factors were considered, patients with the common allele of the genetic variant rs2058878 located in the GRIN2B gene, stayed sober more days than those with a variant allele of the same polymorphism. This finding was replicated in a sample of alcohol-dependent patients treated with acamprosate in a study conducted by collaborators from Germany.

“This association finding is a first step towards development of a pharmacogenetic test allowing physicians to choose appropriate treatment for specific subgroups of alcohol-dependent patients,” says Victor Karpyak, M.D., Ph.D., Mayo Clinic psychiatrist and lead author of the article. “We believe that individualized treatment selection will eliminate the need for trial-and-error approaches and improve treatment efficacy in patients with alcohol use disorders.”

The Mayo findings support evidence implicating an important role of the N-Methyl-D-aspartate (NMDA) receptors in the treatment effects of acamprosate. The researchers say more studies are needed to determine potential importance of identified genetic variants in the longer-term effects of acamprosate, as well as the molecular and physiological mechanisms behind the drug’s action.

The study was funded in part by the Mayo Clinic Center for Individualized Medicine; the SC Johnson Genomics of Addiction Program at Mayo Clinic; the National Institutes of Health; the National Center for Advancing Translational Sciences; the National Genome Research Network of the German Federal Ministry of Education and Research; the Bundesministerium für Bildung und Forschung; and the Alfred Krupp von Bolen und Halbach-Stiftung (Foundation).

Other authors include J. M. Biernacka, Ph.D., Jennifer Geske, G.D. Jenkins, J.M. Cunningham, Ph.D., A.A. Leontovich, Ph.D., O.A. Abulseoud, M.D., Daniel Hall-Flavin, M.D., L.L. Loukianova, M.D., Ph.D., T.D. Schneekloth, M.D., M.K. Skime, Richard Weinshilboum, M.D., Mark Frye, M.D., and D.S. Choi, Ph.D., of Mayo Clinic; J. Ruegg, Karolinska Institutet; O. Kononenko, Uppsala University; J. Frank, M.D., M. Rietschel, M.D., F. Kiefer, M.D., and K. F. Mann, M.D., Mannheim-Heidelburg University; and M.M. Nöthen, M.D., University of Bonn.

About Mayo Clinic
Mayo Clinic is a nonprofit organization committed to medical research and education, and providing expert, whole-person care to everyone who needs healing. For more information, visit http://www.mayoclinic.org/about-mayo-clinic  or http://newsnetwork.mayoclinic.org/ .

Bob Nellis | EurekAlert!
Further information:
http://newsnetwork.mayoclinic.org/discussion/mayo-clinic-researchers-discover-genetic-markers-for-alcoholism-recovery/

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>