Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic identifies a key cellular pathway in prostate cancer

11.02.2014
Mayo Clinic researchers have shed light on a new mechanism by which prostate cancer develops in men.

Central to development of nearly all prostate cancer cases are malfunctions in the androgen receptor — the cellular component that binds to male hormones. The research team has shown that SPOP, a protein that is most frequently mutated in human prostate cancers, is a key regulator of androgen receptor activity that prevents uncontrolled growth of cells in the prostate and thus helps prevent cancer. The findings appear in the journal Cell Reports.

"By uncovering this new and important pathway of androgen receptor destruction, we may one day be able to develop more effective treatments for a substantial proportion of prostate cancer patients who have developed resistance to standard antiandrogen therapy," says Haojie Huang, Ph.D., Mayo Clinic biochemist and senior author of the paper.

SPOP mutations have been detected in approximately 15 percent of prostate cancer cases. In addition, it has been shown that in about 35 percent of prostate cancers, the SPOP protein is expressed at abnormally low levels. Despite its prevalence in prostate cancer, it was not known whether or how SPOP defects contributed to tumor development. What the research team discovered is that SPOP is an enzyme that selectively destroys androgen receptor protein. Failure to do so due to alterations in SPOP results in overabundance of androgen receptor, a master regulator of prostate cancer cell growth.

The Mayo Clinic research team made four major discoveries:

•The antiandrogen receptor is a bona fide degradation substrate of SPOP.
•Androgen receptor splicing variants are resistant to SPOP-mediated degradation.
•Prostate cancer-associated SPOP mutants cannot bind to and promote androgen receptor degradation.

•Androgens antagonize, but antiandrogens promote SPOP-mediated degradation of androgen receptor.

Prostate Cancer Background

Prostate cancer is the second most common cause of cancer in men and the second leading cause of cancer death in American men, with over 913,000 new cases and over 261,000 deaths worldwide each year. Because of the widespread disability and death that prostate cancer causes, finding new strategies to develop better treatments is an important public health goal.

Androgen receptor is essential for normal prostate cell growth and survival. It is also important for initiation and progression of prostate cancer. Androgen deprivation therapy, including chemical castration and/or antiandrogen therapy, is the mainstay for treating advanced/disseminated prostate cancer. However, tumors almost always reoccur two to three years after initial response and relapse into a disease called castration-resistant prostate cancer. Development of this therapy-resistant symptom is related to a persistent activation of androgen receptor.

Co-authors of the article include Jian An, Ph.D.; Chenji Wang, Ph.D.; Yibin Deng, Ph.D.; and Long Yu, M.D., Ph.D., all of Mayo Clinic. Their research was supported by the National Institutes of Health and the Mayo Clinic Cancer Center. Dr. Huang is a member of the Mayo Clinic Cancer Center and the departments of Biochemistry and Molecular Biology, and Urology.

About Mayo Clinic

Recognizing 150 years of serving humanity in 2014, Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit 150years.mayoclinic.org, http://www.mayoclinic.org and newsnetwork.mayoclinic.org.
MEDIA CONTACT:
Robert Nellis, Mayo Clinic Public Affairs,
507-284-5005, newsbureau@mayo.edu

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: Cancer SPOP androgen receptor cell growth effective treatment prostate cancer

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>