Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic identifies 2 genes as potential therapeutic targets for multiple sclerosis

15.09.2009
Early research holds promise for new therapies and better prediction of patient outcomes

A Mayo Clinic study has found that two genes in mice were associated with good central nervous system repair in multiple sclerosis (MS).

These findings give researchers new hope for developing more effective therapies for patients with MS and for predicting MS patients' outcomes. This study will be presented at the Congress of the European Committee for Treatment and Research in Multiple Sclerosis in Dusseldorf, Germany, on Sept. 11, 2009.

"Most MS genetic studies have looked at disease susceptibility -- or why some people get MS and others do not," says Allan Bieber, Ph.D., a Mayo Clinic neuroscientist and author of this study. "This study asked, among those who have MS, why do some do well with the disease while others do poorly, and what might be the genetic determinants of this difference in outcome."

Mayo Clinic provides care for nearly 2,500 patients with MS each year. MS is a disease of the central nervous system that includes the brain, spinal cord and nerves. MS is called a demyelinating disease because it results from damage to myelin, the insulating covering of nerves. It occurs most commonly in those between the ages of 20 and 40, and is the most frequent neurological disorder in young adults in North America and Europe. Approximately 330,000 people in the United States have MS. Symptoms include loss of muscle coordination, strength, vision, balance and cognition.

Dr. Bieber and a team of Mayo Clinic researchers used two different strains of mice with a chronic, progressive MS-like disease. One strain progressed to paralysis and death. The other underwent the initial damage induction phase of the disease and then spontaneously repaired the damage to the central nervous system and retained most neurologic function. Using the powerful genetic mapping techniques that are available for mice, the team mapped two strong genetic determinants of good disease outcome.

"It's possible that the identification of these genes may provide the first important clue as to why some patients with MS do well, while others do not," says Dr. Bieber. "The genetic data indicates that good central nervous system repair results from stimulation of one genetic pathway and inhibition of another genetic pathway. While we're still in the early stages of this research, it could eventually lead to the development of useful therapies that stimulate or inhibit these genetic pathways in patients with MS."

According to Dr. Bieber, the research suggests that there may be a small number of strong genetic determinants for central nervous system repair following demyelinating disease, rather than a larger number of weak determinants.

"If that's true, it may be possible to map the most important genetic determinants of central nervous system repair in patients with MS and define a reparative genotype that could predict patients' outcomes," says Moses Rodriguez, M.D., a Mayo Clinic neurologist and director of Mayo Clinic's Center for Multiple Sclerosis and Central Nervous System Demyelinating Diseases Research and Therapeutics. "Such a diagnostic tool would be a great benefit to patients with MS and is consistent with the concepts of 'individualized medicine.'"

Also on the Mayo Clinic research team was Kanitta Suwansrinon, M.D.

About Mayo Clinic

Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. Doctors from every medical specialty work together to care for patients, joined by common systems and a philosophy of "the needs of the patient come first." More than 3,300 physicians, scientists and researchers and 46,000 allied health staff work at Mayo Clinic, which has sites in Rochester, Minn; Jacksonville, Fla; and Scottsdale/Phoenix, Ariz. Collectively, the three locations treat more than half a million people each year. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education, visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your health stories.

Elizabeth Rice | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>