Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo's 'smart' adult stem cells repair hearts

17.08.2010
'Landmark work' moves beyond the bench

Mayo Clinic investigators, with Belgian collaborators, have demonstrated that rationally "guided" human adult stem cells can effectively heal, repair and regenerate damaged heart tissue. The findings -- called "landmark work" in an accompanying editorial -- appear in today's Journal of the American College of Cardiology.

Stem cells isolated from patients have normally a limited capacity to repair the heart. This innovative technology boosts the regenerative benefit by programming adult stem cells to acquire a cardiac-like profile. Primed by a cocktail of recombinant cardiogenic growth factors, mesenchymal stem cells (MSCs) harvested from the bone marrow of a cohort of patients with coronary artery disease showed "superior functional and structural benefit without adverse side effects" over a 1-year follow-up in a model of heart failure according to the study.

Significance of the Findings

"These findings provide proof-of-principle that "smart" adult stem cells have added benefit in repairing the heart, providing the foundation for further clinical evaluation," says Andre Terzic, M.D., Ph.D., Mayo Clinic researcher and senior investigator of the study. "The successful use of guided "lineage specified" human stem cells is based on natural cardiogenic cues" adds Atta Behfar, M.D., Ph.D. first author of the study. The pre-clinical data reported in this seminal paper have cleared the way for safety and feasibility trials in humans, which were recently conducted in Europe.

In their editorial, Eduardo Marban, M.D., Ph.D., and Konstantinos Malliaras, M.D., of Cedars-Sinai Heart Institute, in Los Angeles describe the Mayo approach as a "boot camp" for stem cells and also write that the study "… provides the first convincing evidence that MSCs, at least in vitro, can in fact become functional cardiomyocytes (heart cells) …"

The long-term potential of the findings include development of an effective regenerative medicine therapy for patients with chronic heart failure.

How It Was Done

Researchers obtained bone marrow-derived stem cells from heart disease patients undergoing coronary bypass surgery. Testing of these stem cells revealed that cells from two of 11 individuals showed an unusual capacity for heart repair. These rare cells demonstrated upregulated genetic transcription factors that helped identify a molecular signature identifying highly regenerative stem cells. The cardiogenic cocktail was then used to induce this signature in non-reparative patient stem cells to program their capacity to repair the heart. Mouse models with heart failure, injected with these cells, demonstrated significant heart function recovery along with improved survival rate after a year, compared to those treated with unguided stem cells or saline.

Specifically, researchers found that the heart tissue healed more effectively; that human cardiac and vascular cells were found participating in the regeneration, repair and strengthening of heart structures within the area of injury; and that scars and vestiges of heart damage appeared to fade away.

Authors include Atta Behfar, M.D., Ph.D.; Satsuki Yamada, M.D., Ph.D.; Ruben Crespo-Diaz; Jonathan Nesbitt; Lois Rowe; Carmen Perez-Terzic, M.D., Ph.D.; Andre Terzic, M.D., Ph.D. of Mayo Clinic; Vinciane Gaussin, Ph.D. and Christian Homsy, M.D., Cardio3 Biosciences, Mont-Saint-Guibert, Belgium; and Jozef Bartunek, M.D., Cardiovascular Center, Aalst, Belgium.

The research was supported by the National Institutes of Health, the American Heart Association, the Marriott Heart Disease Research Program, Cardio 3 Biosciences, the Ted Nash Long Life Foundation, the Ralph Wilson Medical Research Foundation, the Mayo Clinic General Mills Clinician-Investigator Fellowship, and Mayo Clinic.

Mayo Clinic and Drs. Andre Terzic and Atta Behfar have a financial interest associated with technology related to this research program. In accordance with the Bayh-Dole Act, Mayo Clinic has licensed that technology to Cardio 3 Biosciences in exchange for equity. No royalties have accrued to date to the institution or the inventors.

About Mayo Clinic

For more than 100 years, millions of people from all walks of life have found answers at Mayo Clinic. These patients tell us they leave Mayo Clinic with peace of mind knowing they received care from the world's leading experts. Mayo Clinic is the first and largest integrated, not-for-profit group practice in the world. At Mayo Clinic, a team of specialists is assembled to take the time to listen, understand and care for patients' health issues and concerns. These teams draw from more than 3,700 physicians and scientists and 50,100 allied staff that work at Mayo Clinic's campuses in Minnesota, Florida, and Arizona; and community-based providers in more than 70 locations in southern Minnesota, western Wisconsin and northeast Iowa. These locations treat more than half a million people each year. To best serve patients, Mayo Clinic works with many insurance companies, does not require a physician referral in most cases and is an in-network provider for millions of people. To obtain the latest news releases from Mayo Clinic, go to www.mayoclinic.org/news. For information about research and education visit www.mayo.edu. MayoClinic.com (www.mayoclinic.com) is available as a resource for your general health information.

Robert Nellis | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: Biosciences Cardio Heart MSCs Terzic adult stem adult stem cell bone marrow heart failure stem cells

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>