Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayan Art in Yellow and Blue

23.05.2011
Related to the famous Maya blue: Indigo compounds give Mayan art their yellow color

For the Maya, blue was the color of the gods. For ritual purposes, art objects, and murals, they used Maya blue, a pigment without equal with regard to boldness, beauty, and durability.

Maya blue is made of indigo embedded in a special clay mineral called palygorskite. A team led by Antonio Doménech at the University of Valencia (Spain) has now discovered that some Mayan yellow pigments are based on similar components. As the scientists report in the journal Angewandte Chemie, the Maya appear to have developed a preparative technique that was not limited to Maya blue and anticipated modern syntheses of organic–inorganic hybrid materials.

Maya blue is so fascinating because it has a special brightness and a singular color that can range from a bright turquoise to a dark greenish blue. Does the color stem from a unique organic component, a unique linking of the molecules, or a unique production process? Doménech and his team tested these hypotheses.

They surmise that the hue is determined by the ratio of indigo to dehydroindigo, the oxidized form. This ratio depends on how long the Maya heated their formulation. This would allow for the formation of different variations of the addition compound formed by the indigo compounds and the mineral. The researchers further conjecture that the Maya were also able to produce yellow and green pigments from indigo-based pigments.

By means of various spectroscopic and microscopic methods, as well as voltammetry—a special electrochemical process that allows for the identification of pigments in micro- and nanoscale samples from works of art—the scientists examined a series of yellow samples from Mayan murals from different archaeological sites in the Yucatán (Mexico). The results confirm that a whole series of yellow pigments from Mayan mural paintings are made of indigoids bound to palygorskite. The researchers also found ochre.

Doménech and his co-workers think it very likely that the preparation of such “Maya yellow” pigments was an intermediate step in the preparation of indigo and Maya blue. Leaves and branches from indigo plants were probably soaked in a suspension of slaked lime in water and the coarse material filtered out. A portion of the yellow suspension could then be removed and added to palygorskite to make Maya yellow. The remaining suspension would then be stirred intensely and ventilated until it took on a blue color. It was then filtered and dried to obtain indigo for use as a dye. It could also be ground together with palygorskite and heated to produce Maya blue.

Author: Antonio Doménech, Universitat de València (Spain), mailto:antonio.domenech@uv.es

Title: From Maya Blue to "Maya Yellow": A Connection between Ancient Nanostructured Materials from the Voltammetry of Microparticles

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201100921

Antonio Doménech | Angewandte Chemie
Further information:
http://pressroom.angewandte.org.
http://dx.doi.org/10.1002/anie.201100921

Further reports about: Angewandte Chemie Blue Gene yellow light yellow pigments

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>