Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maturing brain flips function of amygdala in regulating stress hormones

21.08.2014

In contrast to evidence that the amygdala stimulates stress responses in adults, researchers at Yerkes National Primate Research Center, Emory University have found that the amygdala has an inhibitory effect on stress hormones during the early development of nonhuman primates. The results are published this week in Journal of Neuroscience.

The amygdala is a region of the brain known to be important for responses to threatening situations and learning about threats. Alterations in the amygdala have been reported in psychiatric disorders such as depression, anxiety disorders like PTSD, schizophrenia and autism spectrum disorder. However, much of what is known about the amygdala comes from research on adults.


The amygdala is a region of the brain known to be important for responses to threats and learning about threats. Its function regulating stress hormones undergoes significant changes as the brain matures, Yerkes research suggests.

Image courtesy of NIMH

"Our findings fit into an emerging theme in neuroscience research: that during childhood, there is a switch in amygdala function and connectivity with other brain regions, particularly the prefrontal cortex," says Mar Sanchez, PhD, neuroscience researcher at Yerkes and associate professor of psychiatry and behavioral sciences at Emory University School of Medicine. The first author of the paper is postdoctoral fellow Jessica Raper, PhD.

The findings are part of a larger longitudinal study at Yerkes National Primate Research Center, examining how amygdala damage within the first month of life affects the development of social and emotional behaviors and neuroendocrine systems in rhesus monkeys from infancy through adulthood. The laboratories of Sanchez and Yerkes researchers Jocelyne Bachevalier, PhD and Kim Wallen, PhD are collaborating on this project.

Previous investigations at Yerkes found that as infants, monkeys with amygdala damage showed higher levels of the stress hormone cortisol. This surprising result contrasted with previous research on adults, which showed that amygdala damage results in lower levels of cortisol.

The team hypothesized that damage to the amygdala generated changes in the HPA axis: a network of endocrine interactions between the hypothalamus within the brain, the pituitary and the adrenal glands, critical for reactions to stress.

"We wanted to examine whether the alterations in stress hormones seen during infancy persisted, and what brain changes were responsible for them," Sanchez says. "In studies of adults, the amygdala and its connections are fully formed at the time of the manipulation, but here neither the amygdala or its connections were fully matured when the damage occurred."

In the current paper, the authors demonstrated that in contrast with adult animals with amygdala damage, juvenile monkeys with early amygdala damage had increased levels of cortisol in the blood, compared to controls. In their cerebrospinal fluid, they also had elevated levels of corticotropin releasing factor (CRF), the neuropeptide that initiates the stress response in the brain. Elevated CRF and cortisol are linked to anxiety and emotional dysregulation in patients with mood disorders.

Despite the increased levels of stress hormones, monkeys with early amygdala damage exhibit a blunted emotional reactivity to threats, including decreased fear and aggression, and reduced anxiety in response to stress. Still, monkeys with neonatal amygdala damage remain competent in interacting with others in their large social groups. These findings are consistent with reports of human patients with damage to the amygdala, Raper says.

"We speculate that the rich social environment provided to the monkeys promotes compensatory mechanisms in cortical regions implicated in the regulation of social behavior," she says. "But neonatal amygdala damage seems more detrimental for the development of stress neuroendocrine circuits in other areas of the brain."

The investigators plan to follow the animals into adulthood to investigate the long-term effects of early amygdala damage on stress hormones, behavior and physiological systems possibly affected by chronically high cortisol levels, such as immune, growth and reproductive functions.

The research was supported by the National Institutes of Mental Health (MH050268, MH732525), the National Science Foundation (Center for Behavioral Neuroscience: IBN 9876754) and the Office of Research Infrastructure Programs (Primate centers: P51OD11132 – formerly NCRR P51RR000165).

Lisa Newbern | Eurek Alert!
Further information:
http://news.emory.edu/stories/2014/08/amygdala_stress_hormones_yerkes/

Further reports about: CRF Health Infrastructure Medicine Neuroscience damage disorders environment function hormones

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>