Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maturing brain flips function of amygdala in regulating stress hormones

21.08.2014

In contrast to evidence that the amygdala stimulates stress responses in adults, researchers at Yerkes National Primate Research Center, Emory University have found that the amygdala has an inhibitory effect on stress hormones during the early development of nonhuman primates. The results are published this week in Journal of Neuroscience.

The amygdala is a region of the brain known to be important for responses to threatening situations and learning about threats. Alterations in the amygdala have been reported in psychiatric disorders such as depression, anxiety disorders like PTSD, schizophrenia and autism spectrum disorder. However, much of what is known about the amygdala comes from research on adults.


The amygdala is a region of the brain known to be important for responses to threats and learning about threats. Its function regulating stress hormones undergoes significant changes as the brain matures, Yerkes research suggests.

Image courtesy of NIMH

"Our findings fit into an emerging theme in neuroscience research: that during childhood, there is a switch in amygdala function and connectivity with other brain regions, particularly the prefrontal cortex," says Mar Sanchez, PhD, neuroscience researcher at Yerkes and associate professor of psychiatry and behavioral sciences at Emory University School of Medicine. The first author of the paper is postdoctoral fellow Jessica Raper, PhD.

The findings are part of a larger longitudinal study at Yerkes National Primate Research Center, examining how amygdala damage within the first month of life affects the development of social and emotional behaviors and neuroendocrine systems in rhesus monkeys from infancy through adulthood. The laboratories of Sanchez and Yerkes researchers Jocelyne Bachevalier, PhD and Kim Wallen, PhD are collaborating on this project.

Previous investigations at Yerkes found that as infants, monkeys with amygdala damage showed higher levels of the stress hormone cortisol. This surprising result contrasted with previous research on adults, which showed that amygdala damage results in lower levels of cortisol.

The team hypothesized that damage to the amygdala generated changes in the HPA axis: a network of endocrine interactions between the hypothalamus within the brain, the pituitary and the adrenal glands, critical for reactions to stress.

"We wanted to examine whether the alterations in stress hormones seen during infancy persisted, and what brain changes were responsible for them," Sanchez says. "In studies of adults, the amygdala and its connections are fully formed at the time of the manipulation, but here neither the amygdala or its connections were fully matured when the damage occurred."

In the current paper, the authors demonstrated that in contrast with adult animals with amygdala damage, juvenile monkeys with early amygdala damage had increased levels of cortisol in the blood, compared to controls. In their cerebrospinal fluid, they also had elevated levels of corticotropin releasing factor (CRF), the neuropeptide that initiates the stress response in the brain. Elevated CRF and cortisol are linked to anxiety and emotional dysregulation in patients with mood disorders.

Despite the increased levels of stress hormones, monkeys with early amygdala damage exhibit a blunted emotional reactivity to threats, including decreased fear and aggression, and reduced anxiety in response to stress. Still, monkeys with neonatal amygdala damage remain competent in interacting with others in their large social groups. These findings are consistent with reports of human patients with damage to the amygdala, Raper says.

"We speculate that the rich social environment provided to the monkeys promotes compensatory mechanisms in cortical regions implicated in the regulation of social behavior," she says. "But neonatal amygdala damage seems more detrimental for the development of stress neuroendocrine circuits in other areas of the brain."

The investigators plan to follow the animals into adulthood to investigate the long-term effects of early amygdala damage on stress hormones, behavior and physiological systems possibly affected by chronically high cortisol levels, such as immune, growth and reproductive functions.

The research was supported by the National Institutes of Mental Health (MH050268, MH732525), the National Science Foundation (Center for Behavioral Neuroscience: IBN 9876754) and the Office of Research Infrastructure Programs (Primate centers: P51OD11132 – formerly NCRR P51RR000165).

Lisa Newbern | Eurek Alert!
Further information:
http://news.emory.edu/stories/2014/08/amygdala_stress_hormones_yerkes/

Further reports about: CRF Health Infrastructure Medicine Neuroscience damage disorders environment function hormones

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>