Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Matrix protein key to fighting viruses

30.04.2009
Researchers from Durham University's Centre for Bioactive Chemistry are developing methods that show how proteins interact with cell membranes when a virus strikes. Using their approach, the team hopes to find new ways to disrupt and disarm 'enveloped viruses' before they spread in our bodies.

Team members, Dr John Sanderson and Dr Paul Yeo from Durham University have helped produce the first ever, high-resolution, full-length structure of a protein from an enveloped virus called the 'matrix protein'.

Viruses work in many different ways but in this case, respiratory syncytial virus (RSV) virions form by a 'budding' process at the plasma membrane of a cell. The matrix protein appears to drive the final assembly process and the formation of viral filaments. It is also clear that the matrix protein is an important determinant of where the virus buds.

Using x-ray crystallography, the team's been able to see the intimate details of the matrix protein that controls how the RSV virus assembles inside a cell. The technique allows them to see how the virus protein functions and this could help the team to develop biochemical tools to treat respiratory ailments and the common cold.

Dr Yeo said: "We can now see what the protein virus structure looks like and we plan to pull the protein apart to see how and where it might be intercepted. These images provide amazing insights into the micro-chemical world of our cells. We have an opportunity to use bioactive chemistry to develop the medical tools of the future."

The team, funded by Durham University, the Wolfson Institute and One North East, looked at the matrix protein of respiratory syncytial virus (RSV), a virus which is the most dangerous respiratory virus affecting infants and for which there is no vaccine. About one in three people suffering a cold are affected by this particular enveloped virus. They are looking at the way in which the matrix protein pulls the virus together and assembles at the membrane of a cell. This interaction is crucial to the development of cellular disease.

Dr John Sanderson said; "Enveloped viruses can be extremely dangerous. They enter the cell and hijack its machinery. They assemble their own cell parts of proteins and nucleic acids, before pinching off a bit of the membrane lining of a cell, in this case the lung, and going on to infect new cells. Our new hi-resolution structure can help us to see how to disrupt that process."

Durham's researchers have looked closely at the different stages of virus assembly and replication and they are particularly interested at the stage where the virus assembles. It's at this stage that they intend to disrupt the protein.

Dr Paul Yeo said: "If you can intercept the virus at the right time, just before it exits the cell, then your immune system can deal with it. Almost all envelope viruses have to assemble and we want to see how the mechanism works, how the virus latches on to cells and how it buds inside them."

The researchers grew crystals of the protein, crystallised them, and then used x-ray diffraction to determine the position in space of every atom of the protein. The information was then used to create images of the protein's structure. These images enable the team see what different parts of the matrix protein do.

If scientists can understand how the protein binds to cell membranes, then chemists and biological scientists may be able to develop tools to stop the protein mechanism working; this could be a stepping stone to the development of drugs to fight viruses like RSV. The Durham team also hope to work on other viruses such as Hepatitis C and measles.

Dr Sanderson said: "The high-resolution and degree of crystallographic order that we've observed in the structure allows us to throw light on the way in which the membrane binds, and on the mechanism by which this protein performs its varied and critical roles. It's an exciting development that could help in the quest for the biochemical tools of the future."

The 5 stages of virus assembly and replication:

Entry into the cell
Replication of genome
Production of the components of the virus
Coordinated assembly
Exit from the cell and release (and multiplication)

Carl Stiansen | EurekAlert!
Further information:
http://www.durham.ac.uk

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>