Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Matrix protein key to fighting viruses

30.04.2009
Researchers from Durham University's Centre for Bioactive Chemistry are developing methods that show how proteins interact with cell membranes when a virus strikes. Using their approach, the team hopes to find new ways to disrupt and disarm 'enveloped viruses' before they spread in our bodies.

Team members, Dr John Sanderson and Dr Paul Yeo from Durham University have helped produce the first ever, high-resolution, full-length structure of a protein from an enveloped virus called the 'matrix protein'.

Viruses work in many different ways but in this case, respiratory syncytial virus (RSV) virions form by a 'budding' process at the plasma membrane of a cell. The matrix protein appears to drive the final assembly process and the formation of viral filaments. It is also clear that the matrix protein is an important determinant of where the virus buds.

Using x-ray crystallography, the team's been able to see the intimate details of the matrix protein that controls how the RSV virus assembles inside a cell. The technique allows them to see how the virus protein functions and this could help the team to develop biochemical tools to treat respiratory ailments and the common cold.

Dr Yeo said: "We can now see what the protein virus structure looks like and we plan to pull the protein apart to see how and where it might be intercepted. These images provide amazing insights into the micro-chemical world of our cells. We have an opportunity to use bioactive chemistry to develop the medical tools of the future."

The team, funded by Durham University, the Wolfson Institute and One North East, looked at the matrix protein of respiratory syncytial virus (RSV), a virus which is the most dangerous respiratory virus affecting infants and for which there is no vaccine. About one in three people suffering a cold are affected by this particular enveloped virus. They are looking at the way in which the matrix protein pulls the virus together and assembles at the membrane of a cell. This interaction is crucial to the development of cellular disease.

Dr John Sanderson said; "Enveloped viruses can be extremely dangerous. They enter the cell and hijack its machinery. They assemble their own cell parts of proteins and nucleic acids, before pinching off a bit of the membrane lining of a cell, in this case the lung, and going on to infect new cells. Our new hi-resolution structure can help us to see how to disrupt that process."

Durham's researchers have looked closely at the different stages of virus assembly and replication and they are particularly interested at the stage where the virus assembles. It's at this stage that they intend to disrupt the protein.

Dr Paul Yeo said: "If you can intercept the virus at the right time, just before it exits the cell, then your immune system can deal with it. Almost all envelope viruses have to assemble and we want to see how the mechanism works, how the virus latches on to cells and how it buds inside them."

The researchers grew crystals of the protein, crystallised them, and then used x-ray diffraction to determine the position in space of every atom of the protein. The information was then used to create images of the protein's structure. These images enable the team see what different parts of the matrix protein do.

If scientists can understand how the protein binds to cell membranes, then chemists and biological scientists may be able to develop tools to stop the protein mechanism working; this could be a stepping stone to the development of drugs to fight viruses like RSV. The Durham team also hope to work on other viruses such as Hepatitis C and measles.

Dr Sanderson said: "The high-resolution and degree of crystallographic order that we've observed in the structure allows us to throw light on the way in which the membrane binds, and on the mechanism by which this protein performs its varied and critical roles. It's an exciting development that could help in the quest for the biochemical tools of the future."

The 5 stages of virus assembly and replication:

Entry into the cell
Replication of genome
Production of the components of the virus
Coordinated assembly
Exit from the cell and release (and multiplication)

Carl Stiansen | EurekAlert!
Further information:
http://www.durham.ac.uk

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>