Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maths model helps to unravel relationship between nutrients and biodiversity

11.09.2008
The level of nutrients in soil determines how many different kinds of plants and trees can thrive in an ecosystem, according to new research published by biologists and mathematicians yesterday (10 September) in Nature.

For the first time ever mathematicians have modelled all the different possible relationships between nutrients and biodiversity in lab-based experimental ecosystems. They found that although nutrient availability definitely has an impact on biodiversity, the precise relationship between the two depends on which species are present in the ecosystem. This means that in some cases low levels of nutrients can lead to high levels of biodiversity.

The new study involved biologists from the University of California Santa Cruz running a lab experiment to find out how different levels of nutrients affected how many species evolved in an ecosystem. Mathematicians from Imperial College London and the University of Bath then devised a model to show how far the results could be applied to real world scenarios.

The experiments set up by the biologists in the USA consisted of mini ecosystems full of E. coli bacteria and a parasite that lives on the E. coli. These simple communities of hosts and pathogens represent complex ecosystems in the real world, like forests, in which hosts such as trees live and evolve alongside pathogens such as fungi, bacteria and viruses.

The overall aim of the study was to shed new light on the mystery of why some ecosystems such as tropical rainforests are teeming with thousands of different plant species, whereas others, like the pine forests of northern Europe, support significantly fewer types of plant life. However, investigating this phenomenon in the field can be difficult, time consuming and results hard to interpret.

Instead, the researchers used the series of mini-ecosystems in the lab, which consisted of test tubes containing E. coli bacteria, a sugary Lucozade-like liquid for the E.coli to eat, and a parasite that lives on the E. coli.

To mimic different environments, the scientists varied the amount of sugar in each different ‘ecosystem’, and then recorded how many new strains of bacteria and parasite evolved in the sugary broth over the course of 150 generations, which took 17 days.

Their results showed that as the levels of sugar in the ecosystem changed, so did the extent to which new strains evolved. This experiment showed that the highest biodiversity resulted from a low level of nutrients.

Professor Laurence Hurst from the University of Bath’s Department of Biology explains: “The results in the lab showed that varying the level of sugary food in these mini-ecosystems caused the amount of biodiversity in the ecosystems to change. This suggests that the availability of nutrients is one of the factors that affect how many different plant species live in different parts of the world. This has been shown in a lab before, but what we wanted to do was use maths to show how these results, which refer to one kind of bacteria and its parasite, can be applied to other organisms and ecosystems in the real world.”

The team from Bath and Imperial constructed a model to work out whether this inverse relationship would be the same in all ecosystems – whether in the lab or in the real world. They found that although nutrients do affect biodiversity, the precise relationship between the two varies from one ecosystem to the next, depending on what species are present.

Dr Rob Beardmore from Imperial College London’s Department of Mathematics explains: “Although there was a clear link between nutrients and biodiversity in the lab, our mathematical model showed that in some ecosystems you will find that higher levels of nutrients lead to more biodiversity, which is opposite to what our biologist colleagues found in the lab. It turns out that the precise nature of this nutrient-diversity relationship varies from one ecosystem to another, and it depends on the complex interactions between species evolving alongside each other.”

The mathematical model can be used to predict what impact different levels of nutrients will have on biodiversity in any given lab-based ecosystem. The team say their results are very important for scientists who use small scale lab experiments to investigate phenomena in the real world.

The study also provides the first real evidence that a theory known as “geographic mosaic co-evolution hypothesis” holds up in real world ecosystems. Co-author on the paper, Dr Ivana Gudelj from Imperial College, explains: “This complicated-sounding theory basically says that nutrient availability will only have an impact on the diversity of an organism, if the organism is involved in a co-evolutionary arms race with pathogens or competitors, like our E.coli was with its parasite. Our biologist colleagues have shown evidence for this in the lab, and our mathematical model suggests that the theory will also hold up in real world ecosystems too.”

Abigail Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>