Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematics ensures clean water

12.10.2010
Reduction of medicine residues in drinking water

Drinking water is a vital prerequisite for all life on earth and is therefore probably our most important resource. However, this resource is also becoming increasingly scarce. Additionally, it is becoming increasingly polluted. Up to now, little attention has been paid to water pollution due to medicines.

Although at present this is by no means dramatic, there is a noticeable accumulation of various medications in our water. Hardly any research is available with regard to the results of this unintentional medication for humans, plants and animals.

Because of this, at the instigation of the Federal Ministry of Health, in January the German Federal Environmental Agency (UBA) and the Institute for Socio-ecological Research (ISOE) invited experts from the health services, the pharmaceutical industry, utility companies, scientists, environmental associations and consumer organisations to a conference in Berlin on " The possibilities for action to reduce the introduction of human medications and their residue into unprocessed and drinking water". Amongst the 50 experts, Dr. Marcus Weber, an employee of the DFG Research Centre MATHEON was the only mathematician present.

As a result of this conference, a consensus paper has now been published with several highly practicable proposals whose implementation is planned in the near future. In several areas of the catalogue of measures, a significant mathematical involvement is planned, which should lead to previously unexpected results.

At MATHEON and in the Zuse Institute, Marcus Weber has been working on the mathematical prerequisites for a rapid and efficient simulation of molecules and their function in various medications for several years. Here, the so-called "key and lock principle" is used, by which computers can construct molecules so that they can predictably attach themselves to a harmful protein, block it and therefore render it harmless. Thanks to visualization and simulation the virtual molecule of the active ingredient can be modified in the computer until the optimum results are achieved.

This is a process which is accompanied by enormous difficulties, as both the molecule of the active ingredient and the harmful protein constantly change under certain influences, for example body temperature. Marcus Weber assumes that at present, throughout the world, up to 80 percent of the computing power of modern large computers is required simply for the simulation of molecules. Here, mathematics can help with new algorithms, which optimize the calculations and therefore the use of computing power. In this respect, Marcus Weber's previous work has certainly had a pioneering effect.

Of course, this research by Marcus Weber and his workgroup can also be used to great advantage and can lead to entirely new approaches for the simulation of hazardous substances which may enter the water cycle and have a detrimental effect on all forms of life if their concentrations are too high.

For example, at the conference in January it was recommended that the relevance of medications to drinking water should be taken into account even at their design stage. "It is not difficult to simulate not only the pharmaceutical effect of the actual medical ingredients in advance, but we can also consider their possible decomposition and transformation products", says Dr. Weber. In a further step, medications can also be developed with particular properties which increase their binding to sediments and active carbon. Such medicines would therefore be easier to remove from the water cycle. In addition it would be possible to ensure that the proportion of active ingredients which leaves the body unused is reduced or ideally completely eliminated.

A wide field in which Marcus Weber and his mathematical research could achieve great progress for the protection of untreated water is the assessment of the risk due to the effect of certain medication residues in drinking water. Many of these trace substances cannot be investigated in experiments on animals, as for this they would need to be isolated (or produced artificially in the laboratory), which is not yet possible for many forms of compounds. Marcus Weber believes that "with our algorithms we can create a virtual laboratory in which the toxicological effect of such decomposition products can be simulated. However, even for us this is a relatively new question, but it is a very interesting and certainly achievable challenge", says the mathematician. An additional success would also be that with the use of a mathematical basis for toxicological investigations, experiments with animals could be eliminated, restricted, or at least could be better planned.

Marcus Weber is convinced that the specialist conference and the resulting consensus paper is an important step towards the purification of water, the basis of our lives. "For me, this aspect is a further example of how our mathematical work can form the basis for successful measures, which above all protect nature."

Further information: Dr. Marcus Weber, DFG-Forschungszentrum MATHEON, Tel.: +49-30-8 41 85-189, E-mail: weber@zib.de

Rudolf Kellermann | idw
Further information:
http://www.matheon.de
http://www.zib.de/Numerik/DrugDesign/index.en.html

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>