Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematics ensures clean water

12.10.2010
Reduction of medicine residues in drinking water

Drinking water is a vital prerequisite for all life on earth and is therefore probably our most important resource. However, this resource is also becoming increasingly scarce. Additionally, it is becoming increasingly polluted. Up to now, little attention has been paid to water pollution due to medicines.

Although at present this is by no means dramatic, there is a noticeable accumulation of various medications in our water. Hardly any research is available with regard to the results of this unintentional medication for humans, plants and animals.

Because of this, at the instigation of the Federal Ministry of Health, in January the German Federal Environmental Agency (UBA) and the Institute for Socio-ecological Research (ISOE) invited experts from the health services, the pharmaceutical industry, utility companies, scientists, environmental associations and consumer organisations to a conference in Berlin on " The possibilities for action to reduce the introduction of human medications and their residue into unprocessed and drinking water". Amongst the 50 experts, Dr. Marcus Weber, an employee of the DFG Research Centre MATHEON was the only mathematician present.

As a result of this conference, a consensus paper has now been published with several highly practicable proposals whose implementation is planned in the near future. In several areas of the catalogue of measures, a significant mathematical involvement is planned, which should lead to previously unexpected results.

At MATHEON and in the Zuse Institute, Marcus Weber has been working on the mathematical prerequisites for a rapid and efficient simulation of molecules and their function in various medications for several years. Here, the so-called "key and lock principle" is used, by which computers can construct molecules so that they can predictably attach themselves to a harmful protein, block it and therefore render it harmless. Thanks to visualization and simulation the virtual molecule of the active ingredient can be modified in the computer until the optimum results are achieved.

This is a process which is accompanied by enormous difficulties, as both the molecule of the active ingredient and the harmful protein constantly change under certain influences, for example body temperature. Marcus Weber assumes that at present, throughout the world, up to 80 percent of the computing power of modern large computers is required simply for the simulation of molecules. Here, mathematics can help with new algorithms, which optimize the calculations and therefore the use of computing power. In this respect, Marcus Weber's previous work has certainly had a pioneering effect.

Of course, this research by Marcus Weber and his workgroup can also be used to great advantage and can lead to entirely new approaches for the simulation of hazardous substances which may enter the water cycle and have a detrimental effect on all forms of life if their concentrations are too high.

For example, at the conference in January it was recommended that the relevance of medications to drinking water should be taken into account even at their design stage. "It is not difficult to simulate not only the pharmaceutical effect of the actual medical ingredients in advance, but we can also consider their possible decomposition and transformation products", says Dr. Weber. In a further step, medications can also be developed with particular properties which increase their binding to sediments and active carbon. Such medicines would therefore be easier to remove from the water cycle. In addition it would be possible to ensure that the proportion of active ingredients which leaves the body unused is reduced or ideally completely eliminated.

A wide field in which Marcus Weber and his mathematical research could achieve great progress for the protection of untreated water is the assessment of the risk due to the effect of certain medication residues in drinking water. Many of these trace substances cannot be investigated in experiments on animals, as for this they would need to be isolated (or produced artificially in the laboratory), which is not yet possible for many forms of compounds. Marcus Weber believes that "with our algorithms we can create a virtual laboratory in which the toxicological effect of such decomposition products can be simulated. However, even for us this is a relatively new question, but it is a very interesting and certainly achievable challenge", says the mathematician. An additional success would also be that with the use of a mathematical basis for toxicological investigations, experiments with animals could be eliminated, restricted, or at least could be better planned.

Marcus Weber is convinced that the specialist conference and the resulting consensus paper is an important step towards the purification of water, the basis of our lives. "For me, this aspect is a further example of how our mathematical work can form the basis for successful measures, which above all protect nature."

Further information: Dr. Marcus Weber, DFG-Forschungszentrum MATHEON, Tel.: +49-30-8 41 85-189, E-mail: weber@zib.de

Rudolf Kellermann | idw
Further information:
http://www.matheon.de
http://www.zib.de/Numerik/DrugDesign/index.en.html

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>