Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Mathematical Model Evaluates Efficiency of E. Coli

06.02.2009
The bacterium E. coli, one of the best-studied single-celled organisms around, is a master of industrial efficiency. But how good is it? Weizmann Institute researchers developed a mathematical model – which uses only five simple equations – to check the efficiency of these complex systems.

The bacterium Escherichia coli, one of the best-studied single-celled organisms around, is a master of industrial efficiency. This bacterium can be thought of as a factory with just one product: itself.

It exists to make copies of itself, and its business model is to make them at the lowest possible cost, with the greatest possible efficiency. Efficiency, in the case of a bacterium, can be defined by the energy and resources it uses to maintain its plant and produce new cells, versus the time it expends on the task.

Dr. Tsvi Tlusty and research student Arbel Tadmor of the Weizmann Institute of Science’s Physics of Complex Systems Department developed a mathematical model for evaluating the efficiency of these microscopic production plants. Their model, which appeared in the online journal PLoS Computational Biology, uses only five remarkably simple equations to check the efficiency of these complex factory systems.

The equations look at two components of the protein production process: ribosomes (the machinery in which proteins are produced) and RNA polymerase (an enzyme that copies the genetic code for protein production onto strands of messenger RNA for further translation into proteins). RNA polymerase is thus a sort of work “supervisor” that keeps protein production running smoothly, checks the specs, and sets the pace. The first equation assesses the production rate of the ribosomes themselves; the second, the protein output of the ribosomes; the third, the production of RNA polymerase. The last two equations deal with how the cell assigns the available ribosomes and polymerases to the various tasks of creating other proteins, more ribosomes, or more polymerases.

The theoretical model was tested in real bacteria. Do bacteria “weigh” the costs of constructing and maintaining their protein production machinery against the gains to be had from being able to produce more proteins in less time? What happens when a critical piece of equipment is in short supply – say, a main ribosome protein? Tlusty and Tadmor found that their model was able to accurately predict how an E. coli would change its production strategy to maximize efficiency following disruptions in the work flow caused by experimental changes to genes with important cellular functions.

What’s the optimum? The model predicts that a bacterium, for instance, should have seven genes for ribosome production. It turns out that that’s exactly the number an average E. coli cell has. Bacteria having five or nine get a much lower efficiency rating. Evolution, in other words, is a master efficiency expert for living factories, meeting any challenges that arise as production conditions change.

Dr. Tsvi Tlusty’s research is supported by the Clore Center for Biological Physics.

For the scientific paper, please see: www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.1000038

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>