Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Math technique de-clutters cancer-cell data, revealing tumor evolution, treatment leads

07.06.2013
In our daily lives, clutter is something that gets in our way, something that makes it harder for us to accomplish things. For doctors and scientists trying to parse mountains of raw biological data, clutter is more than a nuisance; it can stand in the way of figuring out how best to treat someone who is very sick.

Using increasingly cheap and rapid methods to read the billions of "letters" that comprise human genomes – including the genomes of individual cells sampled from cancerous tumors -- scientists are generating far more data than they can easily interpret.

Today, two scientists from Cold Spring Harbor Laboratory (CSHL) publish a mathematical method of simplifying and interpreting genome data bearing evidence of mutations, such as those that characterize specific cancers. Not only is the technique highly accurate; it has immediate utility in efforts to parse tumor cells, in order to determine a patient's prognosis and the best approach to treatment.

CSHL Assistant Professor Alexander Krasnitz, who developed the new technique jointly with American Cancer Society Professor Michael Wigler, explains that it reduces the burden of interpretation by identifying what he and Wigler call COREs, an acronym for "cores of recurrent events."

krasznitz_diagram2013 When genome sequence data from 100 cells sampled from a single human tumor is analyzed, and the mathematical algorithm devised by Krasnitz and Wigler is applied, the rich structure of the data emerges. This is a "heat map" in which each horizontal row contains data from 1 of the 100 sampled cells; and each vertical column contains information about the presence (black) or absence (no mark) of a "CORE." Each core represents a place in the genome of a particular cell that either has amplified DNA (blue bar, top) or deleted DNA (red bar, top). From the mass of data underlying these phenomena, signatures of 4 subpopulations of tumor cells now become visible. The four groups and their evolutionary relation is shown along the left vertical axis: about half are "green," and are normal; the red group -- consisting of only 4 cells of the 100, turns out, genetically, to be the most mutated and dangerous subgroup in this tumor.

Consider the example of a cancerous breast tumor. Central to the CORE concept is what Krasnitz and Wigler refer to as "intervals." An example of an interval would be a segment of DNA that is missing in the genetic sequence of one or more cells sampled from the tumor. Tumor cells are often missing DNA that should normally be present; or conversely, they often have genome intervals in which the normal DNA sequence is amplified – it appears in multiple copies. Such deletions and amplifications are called copy-number variations, or CNVs.

"In cancer," says Krasnitz, "we find intervals in the genome that are hit again and again. You might see this in many cells coming from a single patient's tumor; or you may see these repeating patterns in cells sampled from many patients with a similar cancer type."

In either case, if you superimpose the location of each "hit" – whether a deletion or an amplification of DNA -- against a map of the full human genome, "you end up with these wobbly pile-ups, stacks of 'hits' at the same locations in the genome."

Due to the vagaries of collecting genome data and a certain amount of small-scale variation in the precise boundaries of the deleted or amplified DNA intervals, the stacks don't line up straight; as Krasnitz says, they look "wobbly." This makes them very hard to accurately interpret.

The CORE method he and Wigler describe in a paper appearing in Proceedings of the National Academy of Sciences "is a mathematical way of cleaning up this mess and untangling these stacks of data, which often overlap." When data from 100 cells from a single tumor are analyzed, for example, and the mathematical algorithm devised by Krasnitz and Wigler is applied, the regularity of the stacks is revealed, and the rich structure of the data emerges.

In the example of analyzing 100 cells from one tumor, the net result is that populations and subpopulations of cancer cells can be distinguished; and if the cancer has already become metastatic, CORE will be useful in discerning the relations among cancer cell subpopulations in various parts of the body. Such analysis is a potentially valuable guide to prognosis and can also help to make important treatment decisions

"Target inference from collections of genomic intervals" appears online today ahead of print in Proceedings of the National Academy of Sciences. The authors are: Alexander Krasnitz, Guoli Sun, Peter Andrews and Michael Wigler. The paper can be obtained online at: http://www.pnas.org/content/early/recent

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 360 scientists strong and its Meetings & Courses program hosts more than 12,500 scientists from around the world each year to its Long Island campus and its China center. Tens of thousands more benefit from the research, reviews, and ideas published in journals and books distributed internationally by CSHL Press. The Laboratory's education arm also includes a graduate school and programs for undergraduates as well as middle and high school students and teachers. CSHL is a private, not-for-profit institution on the north shore of Long Island. For more information, visit http://www.cshl.edu.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>