Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Math model of colon inflammation singles out dangerous immune cells

Scientists at the Virginia Bioinformatics Institute (VBI) at Virginia Tech have constructed a mathematical and computational model of inflammatory bowel disease that allows researchers to simulate the cellular and molecular changes underlying chronic inflammation in humans. The model allows scientists to explore different interactions of cells in the immune system, check how these cells are linked to inflammation in the colon, and identify intervention points to perhaps stop the disease in its tracks. The work appears in the Journal of Theoretical Biology.†

More than 1 million people are affected by inflammatory bowel disease in North America alone and direct healthcare expenses for inflammatory bowel disease in the United States are estimated at more than $15 billion annually. What the scientists have been able to do is construct a set of mathematical equations that describe the movement of different cells in the immune system and how these cells interact with different bacteria that can trigger disease in the colon.

Said Josep Bassaganya-Riera, associate professor at VBI, "In collaboration with the Network Dynamics and Simulation Science Laboratory at VBI, researchers in the Nutritional Immunology and Molecular Medicine group have developed a model of inflammation that allows us to investigate in silico the immunological changes that occur when inflammatory bowel disease takes hold of otherwise healthy gastrointestinal tissue."

Inflammatory bowel disease starts when the gut initiates an abnormal immune response to some of the one hundred trillion or so bacteria that come into contact with the colon of the human body. In some cases, this response can lead to inflammatory lesions and ulcerations in the cells lining the colon through which bacteria can invade the tissue. This invasion can lead to recurring inflammation, diarrhea, rectal bleeding, and malnutrition, the tell-tale symptoms of inflammatory bowel disease and infections with some gastroenteric pathogens.

Said Stephen Eubank, deputy director of the Network Dynamics and Simulation Science Laboratory at VBI and one of the authors on the paper, "One thing we are trying to understand with this research is how your immune system lives in peace with the commensal, peace-loving bacteria, yet can still mount a rapid, controlled defense against unfriendly bacteria. We are also interested in what happens when parts of the immune system do not behave as expected, for example when otherwise friendly immune cells attack healthy tissue." Remarked Eubank: "The computational model described in this paper allows scientists to examine these types of events in considerable detail but we are already working on a next-generation model that will allow us to take an even bigger step. Our goal is to develop an agent-based model in a petascale computing environment that will be able to represent hundreds of millions of cells involved in this type of immune response."

Previous studies have shown that in healthy individuals the detrimental immune response is avoided by the presence of regulatory immune cells that inhibit the inflammatory pathway. Added Bassaganya-Riera, "Our model allows researchers to identify those components of the inflammatory pathway that allow regulatory mechanisms to be overridden and immune-mediated disease to proceed."

The mathematical and computational approach of the scientists has already revealed one of the weak links in the complex network of interactions. Said Katherine Wendelsdorf, a graduate student in the Network Dynamics and Simulation Science Laboratory at VBI and lead author of the paper, "Our math analyses revealed a specific type of immune cell, a pro-inflammatory macrophage, to be one of the main culprits for unregulated inflammation in inflammatory bowel disease."

When conditions were simulated in which M1 or classically activated macrophages were removed from the site of infection, a drastic decrease in the inflammatory response linked to disease was observed in the simulations. This observation suggests that M1 macrophages are key targets for intervention strategies to fight mucosal inflammation.

Said Bassaganya-Riera, "Modeling approaches cannot replace experimentation but they can provide a framework for organizing existing data, generating novel mechanistic hypotheses and deciding where to focus key validation experiments. Future efforts in our group will focus on modeling immunity to enteric pathogens."

The research was funded by the National Institutes of Health (MIDAS project grants 5U01 GM070694-05 and 2U01 GM070694-7).

† Wendelsdorf K, Bassaganya-Riera J, Hontecillas R, Eubank S (2010) Model of colonic inflammation: Immune modulatory mechanisms in inflammatory bowel disease Journal of Theoretical Biology 264(4): 1225-1239.

About VBI

The Virginia Bioinformatics Institute ( at Virginia Tech is a premier bioinformatics, computational biology, and systems biology research facility that uses transdisciplinary approaches to science combining information technology, biology, and medicine. These approaches are used to interpret and apply vast amounts of biological data generated from basic research to some of today's key challenges in the biomedical, environmental, and agricultural sciences. With more than 240 highly trained multidisciplinary, international personnel, research at the institute involves collaboration in diverse disciplines such as mathematics, computer science, biology, plant pathology, biochemistry, systems biology, statistics, economics, synthetic biology, and medicine. The large amounts of data generated by this approach are analyzed and interpreted to create new knowledge that is disseminated to the world's scientific, governmental, and wider communities.

Barry Whyte | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>