Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Math model of colon inflammation singles out dangerous immune cells

23.07.2010
Scientists at the Virginia Bioinformatics Institute (VBI) at Virginia Tech have constructed a mathematical and computational model of inflammatory bowel disease that allows researchers to simulate the cellular and molecular changes underlying chronic inflammation in humans. The model allows scientists to explore different interactions of cells in the immune system, check how these cells are linked to inflammation in the colon, and identify intervention points to perhaps stop the disease in its tracks. The work appears in the Journal of Theoretical Biology.†

More than 1 million people are affected by inflammatory bowel disease in North America alone and direct healthcare expenses for inflammatory bowel disease in the United States are estimated at more than $15 billion annually. What the scientists have been able to do is construct a set of mathematical equations that describe the movement of different cells in the immune system and how these cells interact with different bacteria that can trigger disease in the colon.

Said Josep Bassaganya-Riera, associate professor at VBI, "In collaboration with the Network Dynamics and Simulation Science Laboratory at VBI, researchers in the Nutritional Immunology and Molecular Medicine group have developed a model of inflammation that allows us to investigate in silico the immunological changes that occur when inflammatory bowel disease takes hold of otherwise healthy gastrointestinal tissue."

Inflammatory bowel disease starts when the gut initiates an abnormal immune response to some of the one hundred trillion or so bacteria that come into contact with the colon of the human body. In some cases, this response can lead to inflammatory lesions and ulcerations in the cells lining the colon through which bacteria can invade the tissue. This invasion can lead to recurring inflammation, diarrhea, rectal bleeding, and malnutrition, the tell-tale symptoms of inflammatory bowel disease and infections with some gastroenteric pathogens.

Said Stephen Eubank, deputy director of the Network Dynamics and Simulation Science Laboratory at VBI and one of the authors on the paper, "One thing we are trying to understand with this research is how your immune system lives in peace with the commensal, peace-loving bacteria, yet can still mount a rapid, controlled defense against unfriendly bacteria. We are also interested in what happens when parts of the immune system do not behave as expected, for example when otherwise friendly immune cells attack healthy tissue." Remarked Eubank: "The computational model described in this paper allows scientists to examine these types of events in considerable detail but we are already working on a next-generation model that will allow us to take an even bigger step. Our goal is to develop an agent-based model in a petascale computing environment that will be able to represent hundreds of millions of cells involved in this type of immune response."

Previous studies have shown that in healthy individuals the detrimental immune response is avoided by the presence of regulatory immune cells that inhibit the inflammatory pathway. Added Bassaganya-Riera, "Our model allows researchers to identify those components of the inflammatory pathway that allow regulatory mechanisms to be overridden and immune-mediated disease to proceed."

The mathematical and computational approach of the scientists has already revealed one of the weak links in the complex network of interactions. Said Katherine Wendelsdorf, a graduate student in the Network Dynamics and Simulation Science Laboratory at VBI and lead author of the paper, "Our math analyses revealed a specific type of immune cell, a pro-inflammatory macrophage, to be one of the main culprits for unregulated inflammation in inflammatory bowel disease."

When conditions were simulated in which M1 or classically activated macrophages were removed from the site of infection, a drastic decrease in the inflammatory response linked to disease was observed in the simulations. This observation suggests that M1 macrophages are key targets for intervention strategies to fight mucosal inflammation.

Said Bassaganya-Riera, "Modeling approaches cannot replace experimentation but they can provide a framework for organizing existing data, generating novel mechanistic hypotheses and deciding where to focus key validation experiments. Future efforts in our group will focus on modeling immunity to enteric pathogens."

The research was funded by the National Institutes of Health (MIDAS project grants 5U01 GM070694-05 and 2U01 GM070694-7).

† Wendelsdorf K, Bassaganya-Riera J, Hontecillas R, Eubank S (2010) Model of colonic inflammation: Immune modulatory mechanisms in inflammatory bowel disease Journal of Theoretical Biology 264(4): 1225-1239.

About VBI

The Virginia Bioinformatics Institute (http://www.vbi.vt.edu) at Virginia Tech is a premier bioinformatics, computational biology, and systems biology research facility that uses transdisciplinary approaches to science combining information technology, biology, and medicine. These approaches are used to interpret and apply vast amounts of biological data generated from basic research to some of today's key challenges in the biomedical, environmental, and agricultural sciences. With more than 240 highly trained multidisciplinary, international personnel, research at the institute involves collaboration in diverse disciplines such as mathematics, computer science, biology, plant pathology, biochemistry, systems biology, statistics, economics, synthetic biology, and medicine. The large amounts of data generated by this approach are analyzed and interpreted to create new knowledge that is disseminated to the world's scientific, governmental, and wider communities.

Barry Whyte | EurekAlert!
Further information:
http://www.vbi.vt.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>