Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maternal care influences brain chemistry into adulthood

08.12.2011
The effect of the messenger substance neuropeptide Y depends on the behaviour of the mother during infancy

Neuropeptide Y (NPY) is the most abundant peptide hormone of the central nervous system. It is involved in various processes including stress management, the development of anxiety behaviour and body weight regulation.


In a study on mice, scientists have discovered that the effect of the peptide hormone of NPY depends on how much care and attention the young animals experienced in the first three weeks of life. Mice who had received little care from their mothers were more anxious adults than their counterparts who had received intensive attention in their early weeks of life. © Max Planck Institute for Medical Research

A collaborative research group including scientists from the Max Planck Institute for Medical Research in Heidelberg has demonstrated using mice that intensive maternal care during infancy promotes the effect of NPY in the brain.

As a result of receiving such care, the animals were also less anxious in adulthood and weighed more than their counterparts who had received less affection. The research group was able to show that the effect is explained by the maternal care which stimulated the persistent formation of certain NPY receptors in the forebrain.

Neuropeptide Y (NPY) assumes several key roles in the brain’s complex control circuits. The messenger substance not only influences body weight but also controls, among other things, the development of anxiety and stress responses. Hence NPY plays an important role in a series of mental illnesses such as post-traumatic stress disorders and anxiety disorders. NPY takes effect in the brain by binding to different docking sites on the neurons – the NPY receptors. In this way, the hormone triggers signal cascades which control the different physical functions.

In a study on mice carried out in Rolf Sprengel from the Max Planck Institute for Medical Research and his colleagues in Italy have shown that the effect of NPY depends on how much care and attention the young animals experienced in the first three weeks of life. Mice who had received little care from their mothers were more anxious adults than their counterparts who had received intensive attention in their early weeks of life. They also remained slimmer throughout their lives. As the researchers discovered, the maternal behaviour influenced the formation of NPY1 receptors in the limbic system – the area of the brain responsible for the processing of emotions.

“We were able to show that the expression of the NPY1 receptor in the young animals’ limbic system is increased by good maternal care,” explains Rolf Sprengel. “This ensures their healthy development in the long term.” The positive effects of maternal care and attention were evidenced by the fact that the young animals gained weight faster and showed greater courage in behavioural experiments as adults than rodents which had experienced little warmth and security after birth.

For their study, the scientists had newborn mice, in which the NPY1 receptors had been switched off selectively, raised by mothers who differed in their behaviour towards the young animals. One group belonged to a mouse strain that was exemplary in caring for its young. These females spent a lot of time with their offspring, fed them frequently and, in addition to extensive grooming, also provided intensive physical contact. In young animals which grew up under such conditions, new NPY-1 receptors formed in the brain’s limbic system. The second group of females were programmed to take far less care of the young. In this case, the number of NPY1 receptors in the young mice did not increase.

The neuroscientists’ findings help us to reach a better understanding of how experience in the early life of an organism can affect it in later life. “The results of the study show how maternal care and attention have a sustained impact on the chemistry of the limbic system,” says Rolf Sprengel. Maternal behaviour can influence the emotions and physical constitution into adulthood in this way.

Contact
Dr. Rolf Sprengel
Max Planck Institute for Medical Research, Heidelberg
Phone: +49 62 2148-6101
Email: Rolf.Sprengel@mpimf-heidelberg.mpg.de
Original publication
Ilaria Bertocchi, Alessandra Oberto, Angela Longo, Paolo Mele, Marianna Sabetta, Alessandro Bartolomucci, Paola Palanza, Rolf Sprengel, Carola Eva
Regulatory functions of limbic Y1 receptors in body weight and anxiety uncovered by conditional knockout and maternal care

PNAS, doi: 10.1073/pnas.1109468108

Dr. Rolf Sprengel | Max-Planck-Institut
Further information:
http://www.mpg.de/4685916/maternal_care_brain_chemistry

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>