Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material shows promise for trapping pollutants

07.09.2011
Effective substrate for ion exchange technology could be used in radioactive waste disposal to prevent groundwater contamination

Water softening techniques are very effective for removing minerals such as calcium and magnesium, which occur as positively-charged ions in "hard" water. But many heavy metals and other inorganic pollutants form negatively-charged ions in water, and existing water treatment processes to remove them are inefficient and expensive.

Chemists at the University of California, Santa Cruz, have now developed a new type of material that can soak up negatively-charged pollutants from water. The new material, which they call SLUG-26, could be used to treat polluted water through an ion exchange process similar to water softening. In a water softener, sodium ions weakly attached to a negatively-charged resin are exchanged for the hard-water minerals, which are held more tightly by the resin. SLUG-26 provides a positively-charged substrate that can exchange a nontoxic negative ion for the negatively-charged pollutants.

"Our goal for the past 12 years has been to make materials that can trap pollutants, and we finally got what we wanted. The data show that the exchange process works," said Scott Oliver, associate professor of chemistry at UC Santa Cruz.

The chemical name for SLUG-26 is copper hydroxide ethanedisulfonate. It has a layered structure of positively-charged two-dimensional sheets with a high capacity for holding onto negative ions. Oliver and UCSC graduate student Honghan Fei described the compound in a paper that will be published in the journal Angewandte Chemie and is currently available online.

The researchers are currently focusing on the use of SLUG-26 to trap the radioactive metal technetium, which is a major concern for long-term disposal of radioactive waste. Technetium is produced in nuclear reactors and has a long half-life of 212,000 years. It forms the negative ion pertechnetate in water and can leach out of solid waste, making groundwater contamination a serious concern.

"It's a problem because of its environmental mobility, so they need new ways to trap it," Oliver said.

In their initial studies, the researchers used manganese, which forms the negative ion permanganate, as a non-radioactive analog for technetium and pertechnetate. The next step will be to work with technetium and see if SLUG-26 performs as effectively as it did in the initial studies.

"Whether or not it can be used in the real world is still to be seen, but so far it looks very promising," Oliver said.

This research was supported by the National Science Foundation.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>