Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Material Screening Method Allows More Precise Control Over Stem Cells

15.04.2013
When it comes to delivering genes to living human tissue, the odds of success come down the molecule. The entire therapy — including the tools used to bring new genetic material into a cell — must have predictable effects.

Now, a new screening process will simplify non-viral transfection, providing a method researchers and clinicians use to find an optimal set of biomaterials to deliver genes to cells.

Developed by William Murphy, the Harvey D. Spangler professor of biomedical engineering at the University of Wisconsin-Madison, the method gives researchers greater control over how cells react to the gene delivery mechanism. The broader implication is more nuanced, effective control over cell behavior. "We've been exploring using this concept for reprogramming of adult cells, as well as controlling differentiation of stem cell types,” Murphy says.

Murphy and his collaborators published news of their advance in the March 28, 2013 issue of Nature Scientific Reports. http://www.nature.com/srep/2013/130328/srep01567/full/srep01567.html

In a current successful approach, researchers use specialized viruses to deliver genetic material to cells. While efficient, that method also carries a greater risk of turning on unwanted genes or provoking an immune response from the body —making it less attractive for sensitive biomedical applications like controlling stem cell behavior, says Murphy.

His team has developed a process that does not rely on viruses. Rather, the researchers can grow specific calcium phosphate coatings that serve as a medium via which genetic material can be delivered to cells more efficiently. By matching a coating to a specific application for delivering genes, Murphy has seen up to a 70-fold increase in successful expression of those genes in human stem cells.

“From an application standpoint, the advance could be really impactful, and could enable gene delivery to become an integral part of medical device design and tissue engineering applications,” says Murphy.

The process could be critical to further advances in regenerative medicine. Since researchers can apply it to any size or shape of tissue engineering structure, it could help provide engineers a simpler way to build the complex tissue structures required to deliver next-generation drug screening and patient therapies.

The advance was made possible with funding support from the AO Foundation and the National Institutes of Health.

—Mark Riechers, 608-265-8592, mriechers@engr.wisc.edu

Mark Riechers | Newswise
Further information:
http://www.wisc.edu

Further reports about: Murphy Screening Stem cell innovation cell type methanol fuel cells

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>