Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Material Screening Method Allows More Precise Control Over Stem Cells

When it comes to delivering genes to living human tissue, the odds of success come down the molecule. The entire therapy — including the tools used to bring new genetic material into a cell — must have predictable effects.

Now, a new screening process will simplify non-viral transfection, providing a method researchers and clinicians use to find an optimal set of biomaterials to deliver genes to cells.

Developed by William Murphy, the Harvey D. Spangler professor of biomedical engineering at the University of Wisconsin-Madison, the method gives researchers greater control over how cells react to the gene delivery mechanism. The broader implication is more nuanced, effective control over cell behavior. "We've been exploring using this concept for reprogramming of adult cells, as well as controlling differentiation of stem cell types,” Murphy says.

Murphy and his collaborators published news of their advance in the March 28, 2013 issue of Nature Scientific Reports.

In a current successful approach, researchers use specialized viruses to deliver genetic material to cells. While efficient, that method also carries a greater risk of turning on unwanted genes or provoking an immune response from the body —making it less attractive for sensitive biomedical applications like controlling stem cell behavior, says Murphy.

His team has developed a process that does not rely on viruses. Rather, the researchers can grow specific calcium phosphate coatings that serve as a medium via which genetic material can be delivered to cells more efficiently. By matching a coating to a specific application for delivering genes, Murphy has seen up to a 70-fold increase in successful expression of those genes in human stem cells.

“From an application standpoint, the advance could be really impactful, and could enable gene delivery to become an integral part of medical device design and tissue engineering applications,” says Murphy.

The process could be critical to further advances in regenerative medicine. Since researchers can apply it to any size or shape of tissue engineering structure, it could help provide engineers a simpler way to build the complex tissue structures required to deliver next-generation drug screening and patient therapies.

The advance was made possible with funding support from the AO Foundation and the National Institutes of Health.

—Mark Riechers, 608-265-8592,

Mark Riechers | Newswise
Further information:

Further reports about: Murphy Screening Stem cell innovation cell type methanol fuel cells

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>