Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mast Cells Give Clues in Diagnosis, Treatment of Dengue

02.05.2013
A protein produced by mast cells in the immune system may predict which people infected with dengue virus will develop life-threatening complications, according to researchers at Duke Medicine and Duke-National University of Singapore (Duke-NUS).

Their study also found that in experiments in mice, a class of drugs commonly used to treat asthma by targeting the mast cells could help treat vascular symptoms associated with dengue infections. The findings were published in the online journal eLife on April 30, 2013.


Wikipedia/Muhammad Mahdi Karim
An Aedes aegypti mosquito can spread dengue virus

Dengue virus is spread by mosquitoes and infects as many as 390 million people worldwide each year, according to new estimates published in the journal Nature. It is a significant health issue in tropical areas of the world including parts of Latin America and Asia, but Florida residents have reported cases in recent years.

No treatments are available for dengue virus, and serious cases can result in widespread vascular leakage and hemorrhaging.

In 2011, Duke researchers reported that mast cells, which help the body respond to bacteria and other pathogens, play a role in attacking dengue virus and halting its spread. This finding presented new avenues for research, given the existing classes of drugs that target mast cells or the products of mast cells once they are activated.

In one experiment in the current study of dengue virus in mice, the researchers found that certain classes of drugs commonly used to treat asthma are effective in limiting vascular leakage associated with dengue.

“It may not seem intuitive how asthma and dengue infection would be related and would respond to the same types of drugs, but because both diseases are promoted by mast cells, the cellular targets of the class of drugs is quite effective,” said lead author Ashley L. St. John, PhD, assistant professor of emerging infectious diseases at Duke-NUS.

The researchers continued to investigate the role of mast cells in attacking dengue virus in humans, and identified a biomarker – a mast cell-derived product – that appeared to predict the illness’ most severe cases in human patients.

Most patients infected by a dengue virus develop a high fever, dubbed dengue fever, and recover on their own. However, a small number of these cases develop into dengue hemorrhagic fever, a dangerous condition marked by serious complications, including bleeding, respiratory distress and severe abdominal pain.

Until now, doctors have not been able to predict who will develop dengue hemorrhagic fever. When the researchers studied blood serum samples from patients with dengue infection, they found that the levels of a protein produced by mast cells, chymase, were significantly higher in the patients who developed dengue hemorrhagic fever compared to those who recovered after dengue fever.

“In addition to revealing a potential new way to diagnose and treat dengue infections, these findings may have much broader applicability for other infectious diseases where vascular leakage is a major pathologic outcome,” said senior study author Soman N. Abraham, PhD, professor of pathology, immunology, and molecular genetics and microbiology at Duke Medicine and professor of emerging infectious diseases at Duke-NUS.

Other coauthors include Abhay P. S. Rathore, Raghavan Bhuvanakantham and Mah-Lee Ng of the department of microbiology at the National University of Singapore.

Funding was provided by the National Institutes of Health (R21 DA029731 and R01 DK077159), the National Medical Research Council of Singapore and the Duke-NUS Signature Research Program funded by Singapore’s Ministry of Health.

Rachel Harrison | Newswise
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>