Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mast Cells Give Clues in Diagnosis, Treatment of Dengue

A protein produced by mast cells in the immune system may predict which people infected with dengue virus will develop life-threatening complications, according to researchers at Duke Medicine and Duke-National University of Singapore (Duke-NUS).

Their study also found that in experiments in mice, a class of drugs commonly used to treat asthma by targeting the mast cells could help treat vascular symptoms associated with dengue infections. The findings were published in the online journal eLife on April 30, 2013.

Wikipedia/Muhammad Mahdi Karim
An Aedes aegypti mosquito can spread dengue virus

Dengue virus is spread by mosquitoes and infects as many as 390 million people worldwide each year, according to new estimates published in the journal Nature. It is a significant health issue in tropical areas of the world including parts of Latin America and Asia, but Florida residents have reported cases in recent years.

No treatments are available for dengue virus, and serious cases can result in widespread vascular leakage and hemorrhaging.

In 2011, Duke researchers reported that mast cells, which help the body respond to bacteria and other pathogens, play a role in attacking dengue virus and halting its spread. This finding presented new avenues for research, given the existing classes of drugs that target mast cells or the products of mast cells once they are activated.

In one experiment in the current study of dengue virus in mice, the researchers found that certain classes of drugs commonly used to treat asthma are effective in limiting vascular leakage associated with dengue.

“It may not seem intuitive how asthma and dengue infection would be related and would respond to the same types of drugs, but because both diseases are promoted by mast cells, the cellular targets of the class of drugs is quite effective,” said lead author Ashley L. St. John, PhD, assistant professor of emerging infectious diseases at Duke-NUS.

The researchers continued to investigate the role of mast cells in attacking dengue virus in humans, and identified a biomarker – a mast cell-derived product – that appeared to predict the illness’ most severe cases in human patients.

Most patients infected by a dengue virus develop a high fever, dubbed dengue fever, and recover on their own. However, a small number of these cases develop into dengue hemorrhagic fever, a dangerous condition marked by serious complications, including bleeding, respiratory distress and severe abdominal pain.

Until now, doctors have not been able to predict who will develop dengue hemorrhagic fever. When the researchers studied blood serum samples from patients with dengue infection, they found that the levels of a protein produced by mast cells, chymase, were significantly higher in the patients who developed dengue hemorrhagic fever compared to those who recovered after dengue fever.

“In addition to revealing a potential new way to diagnose and treat dengue infections, these findings may have much broader applicability for other infectious diseases where vascular leakage is a major pathologic outcome,” said senior study author Soman N. Abraham, PhD, professor of pathology, immunology, and molecular genetics and microbiology at Duke Medicine and professor of emerging infectious diseases at Duke-NUS.

Other coauthors include Abhay P. S. Rathore, Raghavan Bhuvanakantham and Mah-Lee Ng of the department of microbiology at the National University of Singapore.

Funding was provided by the National Institutes of Health (R21 DA029731 and R01 DK077159), the National Medical Research Council of Singapore and the Duke-NUS Signature Research Program funded by Singapore’s Ministry of Health.

Rachel Harrison | Newswise
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>