Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massachussetts General-developed device monitors key step in development of tumor metastases

19.08.2014

A microfluidic device developed at Massachusetts General Hospital (MGH) may help study key steps in the process by which cancer cells break off from a primary tumor to invade other tissues and form metastases.

In their report published in Nature Materials, the investigators describe an stands for epithelial-mesenchymal transition, a fundamental change in cellular characteristics that has been associated with the ability of tumor cells to migrate and invade other sites in the body. Therapies that target this process may be able to slow or halt tumor metastasis.


As cells undergoing the epithelial-mesenchymal transition move from left to right through the EMT chip, those expressing mesenchymal markers (red) break away and move independently from other cells, while cells expressing epithelial markers (green) continue to move as a collective front.

Credit: BioMEMS Resource Center, Massachusetts General Hospital

"This device gives us a platform to be used in testing and comparing compounds to block or delay the epithelial-mesenchymal transition, potentially slowing the progression of cancer," says Daniel Irimia, MD, PhD, associate director of the BioMEMS Resource Center in the MGH Department of Surgery.

Normally a stage in embryonic development, EMT is important during normal wound healing and also appears to take place when epithelial cells lining bodily surfaces and cavities become malignant. Instead of adhering to each other tightly in layers, cells that have undergone EMT gain the ability to separate out, move to other parts of the body and implant themselves into the new sites. Cells that have transitioned into a mesenchymal state appear to be more resistant to cancer therapies or other measures designed to induce cell death.

The device developed at the MGH allows investigator to follow the movement of cells passing through a comb-like array of micropillars, which temporarily separates cells that are adhering to each other. To establish baseline characteristics of noncancerous cells, the investigators first studied the passage of normal epithelial cells through the array. They observed that those cells moved at the same speed as neighboring cells, reconnecting when they come into contact with each other into multicellular sheets that repeatedly break apart and reseal. Tumor cells, however, passed quickly and more directly through the device and did not interact with nearby cells.

When cells in which the process of EMT had been initiated by genetic manipulation were observed passing through the device, at first they migrated collectively. But soon after encountering the first micropillars, many cells broke away from the collective front and migrated individually for the rest of their trajectory.

Some cells appeared to undergo the opposite transition, reverting from individual migration back to collective migration. Subsequent analysis revealed that the slower moving cells that continued migrating together expressed epithelial markers, while the faster moving, independently migrating cells expressed mesenchymal markers. The individually cells migrating also appeared to be more resistant to treatment with chemotherapy drugs.

A particular advantage of the EMT chip is the ability to observe how the behavior of a population of cells changes over time. "Instead of providing a snapshot of cells or tissues at a specific moment, as traditional histology studies do, the new chip can capture the changing dynamics of individual or collective cellular migration," explains Irimia, an assistant professor of Surgery at Harvard Medical School.

"In the controlled environment of the EMT chip, these processes resemble such phase transitions as the change from solid to liquid that occurs with melting. Analogies with well studied physical processes are very useful for summarizing the complex EMT process into a few parameters. These parameters are very helpful when making comparisons between different cell types and studying the contribution of various biological processes to EMT. They are also useful when comparing different chemicals to discover new compounds to block or delay EMT"

###

Ian Wong, PhD, formerly of the BioMEMS Resource Center and now at the Brown University School of Engineering, is lead author of the Nature Materials paper. Additional co-authors are Elisabeth Wong, Sinem Park, PhD, and Mehmet Toner, PhD, BioMEMS Resource Center; and Sarah Javaid, PhD, and Daniel Haber, MD, MGH Cancer Center. The study was supported by grants from the Merck Fellowship of the Damon Runyon Cancer Research Foundation, Howard Hughes Medical Institute, and National Institutes of Health grants CA129933, EB002503, CA135601 and GM092804.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $785 million and major research centers in HIV/AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Katie Marquedant | Eurek Alert!

Further reports about: Cancer EMT epithelial mesenchymal metastases migrating processes transition

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>