Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massachusetts Eye and Ear researchers discover elusive gene that causes a form of blindness from birth

30.07.2012
Researchers from the Massachusetts Eye and Ear Infirmary, The Children's Hospital of Philadelphia, Loyola University Chicago Health Sciences Division and their collaborators have isolated an elusive human gene that causes a common form of Leber congenital amaurosis (LCA), a relatively rare but devastating form of early-onset blindness. The new LCA gene is called NMNAT1. Finding the specific gene mutated in patients with LCA is the first step towards developing sight-saving gene therapy.

LCA is an inherited retinal degenerative disease characterized by reduced vision in infancy. Within the first few months of life, parents usually notice a lack of visual responsiveness and unusual roving eye movements known as nystagmus. LCA typically involves only vision problems, but can be accompanied by disease in other organ systems in a minority of patients. LCA is a common reason children are enrolled in schools for the blind.

"The immediate benefit of this discovery is that affected patients with mutations in this new LCA gene now know the cause of their condition," said Eric Pierce, M.D., Ph.D., co-senior author and director of the Ocular Genomics Institute at Mass. Eye and Ear. "Scientists now have another piece to the puzzle as to why some children are born with LCA and decreased vision. The long-term goal of our research is to develop therapies to limit or prevent vision loss from these disorders."

NMNAT1 is the 18th identified LCA gene. The gene resides in a region that was known to harbor an LCA gene since 2003, but the specific disease gene has been undiscovered until now. These findings will be published on July 29 in the online edition of Nature Genetics.

To identify NMNAT1, scientists performed whole exome sequencing of the family of two siblings who initially presented for evaluation of LCA but who had no mutations in any of the known LCA genes. Being seen by a multi-disciplinary team that took the case from careful clinical characterization to genetic testing to the research laboratory was an essential ingredient for success.

"By using whole exome sequencing, we found a mutation in a gene that no one could have predicted would be associated with LCA," said Dr. Pierce.

"Whereas most of the known LCA genes involve dysfunction of retinal ciliary proteins necessary for light detection in the eye, NMNAT1 is uniquely distinguished by being the first metabolic enzyme linked to LCA," said Marni J. Falk, M.D., co-first author and Clinical Geneticist at The Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine.

Having found a mutation in NMNAT1 in this one family, the investigators next asked if mutations in NMNAT1 also cause disease in other patients with LCA. Screening of 284 unrelated patients with LCA from the United States, England, France and India allowed them to identify 13 other patients with mutations in NMNAT1 as the cause of their disease.

Drs. Falk, Pierce and colleagues also studied how the identified mutations in NMNAT1 affect the function of the NMNAT1 protein, and thus may cause dysfunction and death of the light sensitive photoreceptor cells in the retina. Working together with Eiko Nakamaru-Ogiso, Ph.D., in the Department of Biochemistry and Biophysics at The University of Pennsylvania, they found that mutations in NMNAT1 appear to decrease the ability of the NMNAT1 protein to produce NAD+, a key mediator of cellular signaling and energetics.

Early treatment for patients with NMNAT1-related LCA could be especially beneficial.

Researchers found that all but the youngest patient with NMNAT1 mutations had damage to the macula, the center of the retina that is needed for central vision. "This 4-year-old girl who doesn't have central vision loss yet can possibly benefit substantially if we can devise a therapy for her NMNAT1-mediated LCA that prevents her from developing severe central vision loss," Dr. Pierce said.

This study is an example of the multidisciplinary collaboration among the three institutions, using exome sequencing to discover genes involved in inherited diseases caused by mutations of a single gene. "With the robust database and pipeline that we have developed, we have analyzed more than 300 whole exomes of patients and families with single-gene diseases," said Dr. Xiaowu Gai, co-senior author and director of the Center for Biomedical Informatics at Loyola University Chicago Stritch School of Medicine. "We are following up on a number of strong candidate genes. We are sequencing many new samples and expect similar exciting discoveries for other diseases."

About Massachusetts Eye and Ear

Mass. Eye and Ear clinicians and scientists are driven by a mission to find cures for blindness, deafness and diseases of the head and neck. After uniting with Schepens Eye Research Institute in 2011, Mass. Eye and Ear in Boston became the world's largest vision and hearing research center, offering hope and healing to patients everywhere through discovery and innovation. Mass. Eye and Ear is a Harvard Medical School teaching hospital and trains future medical leaders in ophthalmology and otolaryngology, through residency as well as clinical and research fellowships. Internationally acclaimed since its founding in 1824, Mass. Eye and Ear employs full-time, board-certified physicians who offer high-quality and affordable specialty care that ranges from the routine to the very complex. U.S. News & World Report's "Best Hospitals Survey" has consistently ranked the Mass. Eye and Ear Departments of Otolaryngology and Ophthalmology as top five in the nation. Mass. Eye and Ear is home to the Ocular Genomics Institute which aims to translate the promise of personalized genomic medicine into clinical care for ophthalmic disorders. For more information about life-changing care and research, or to learn how you can help, please visit MassEyeAndEar.org.

Grant support:
This work was supported by grants from the National Institutes of Health [RO1-EY12910 (E.A.P.), R03-DK082446 (M.J.F.), R01-GM097409 (E.N-O), P30HD026979 (M.J.F.,R.X.) and P30EY014104 (MEEI core support)]; the Foundation Fighting Blindness USA (I.A.,A.D.B.,E.L.B.,S.S.B.,Q.L.,A.T.M., D.S.M.,E.A.P., J-A.S.,S.M-S., A.R.W.); Rosanne Silbermann Foundation (E.A.P.); Penn Genome Frontiers Institute (E.A.P, X.G.); Institutional Fund to the Center for Biomedical Informatics by the Loyola University Stritch School of Medicine (X.G.); the Foerderer Award for Excellence from the Children's Hospital of Philadelphia (M.J.F. and X.G.); The Angelina Foundation Fund from the Division of Child Development and Metabolic Disease at The Children's Hospital of Philadelphia (M.J.F.); The Clinical and Translational Research Center at The Children's Hospital of Philadelphia (UL1-RR-024134) (M.J.F. and E.A.P.); the Department of Biotechnology, Government of India and the Champalimaud Foundation, Portugal (C.K); the Hyderabad Eye Research Foundation (C.K.); a senior research fellowship from the Council for Scientific and Industrial Research (R.S.); Foundation Voir et Entendre (C.Z.), Ville de Paris and Région Ille de France; RP Fighting Blindness (UK)(A.R.W.), Fight For Sight (UK) (A.D.B.,S.S.B.,A.T.M., D.S.M.,A.R.W.), Moorfields Eye Hospital NIHR BRC for Ophthalmology (A.D.B.,S.S.B.,A.T.M.,D.S.M.,A.R.W.), Special Trustees of Moorfields Eye Hospital (A.D.B., S.S.B.,A.T.M.,D.S.M.,A.R.W.).

Mary Leach | EurekAlert!
Further information:
http://www.harvard.edu
http://www.MassEyeAndEar.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>