Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marsupial embryo jumps ahead in development

30.11.2010
Long a staple of nature documentaries, the somewhat bizarre development of a grub-like pink marsupial embryo outside the mother's womb is curious in another way.

Duke University researchers have found that the developmental program executed by the marsupial embryo runs in a different order than the program executed by virtually every other vertebrate animal.

"The limbs are at a different place in the entire timeline," said Anna Keyte, a postdoctoral biology researcher at Duke who did this work as part of her doctoral dissertation. "They begin development before almost any other structure in the body."

Biologists have been pursuing the notion that limb development is triggered by other organ systems coming on line first, but this study shows the marsupial's limbs begin development without such triggers.

"Development is probably more flexible than we might have known otherwise," said biology professor Kathleen Smith. Their study animals were gray short-tailed opossums (Monodelphis domestica) native to Brazil and Bolivia, but the same should hold true for any marsupial, Smith said.

For the undeveloped embryo to be able to drag itself across the mother's belly from the birth canal to the teat, it needs a formidable pair of forelimbs. To get them, its developmental program has been rearranged to start building the forelimbs much sooner.

"A lot of these genes were turned on earlier than you'd see in a mouse or a chick," Keyte said. The researchers were also able to show that the forelimbs received cells from a much larger part of the developing embryo than is normally seen in other vertebrates. What surprised the researchers was that the genetic program to establish the hind limbs also appeared to be turned on early.

Gene expression sets up the pattern of where each of the four limbs will be, but the marsupial's forelimbs grow much faster than the hind limbs because the embryo devotes more of its scarce number of early cells to building those structures, Smith said. The plans are in place for the hind limbs, but not the bricks to build them.

The embryo emerges from the mother with burly forearms that include bones and well developed muscles, while the hind limbs are small and rubbery.

Blind, hairless and with an incomplete brain, a marsupial embryo is shockingly underdeveloped to be living outside the womb. But the system obviously works for marsupials.

"There are probably 50 explanations for why marsupials develop outside the womb, and none of them are very good," Smith said. It's pretty clear however that the external development gives the female a lot more control over her reproduction. If conditions change or she runs out of food, the marsupial mother can easily terminate an external pregnancy.

CITATION "Developmental origins of precocial forelimbs in marsupial neonates," Anna L. Keyte and Kathleen K. Smith. Development 137, 4283-4294 (2010) doi:10.1242/dev.049445

Karl Leif Bates | EurekAlert!
Further information:
http://dev.biologists.org/content/137/24/4283.full.pdf

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>