Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Marmoset sequence sheds new light on primate biology and evolution


An international team of scientists led by the Baylor College of Medicine and Washington University St. Louis, including a researcher from the University of Veterinary Medicine, Vienna have completed the genome sequence of the common marmoset – the first sequence of a New World Monkey – providing new information about the marmoset’s unique rapid reproductive system, physiology and growth shedding new light on primate biology and evolution. The team published the work in the journal Nature Genetics.

With the sequence of the marmoset, the team revealed for the first time the genome of a non-human primate in the New World monkeys, which represents a separate branch in the primate evolutionary tree that is more distant from humans than those whose genomes have been studied in detail before. The sequence allows researchers to broaden their ability to study the human genome and its history as revealed by comparison with other primates.

The common marmoset is a non-human primate that belongs to the branch of New World Monkeys.

Photo: Hans Novak / Haus des Meeres

The biology of twinning

The study revealed unique genetic characteristics observed in the marmoset, including several genes that are likely responsible for their ability to consistently reproduce multiple births. Unlike humans, marmosets consistently give birth to twins without the association of any medical issues.

... more about:
»Genome »Medicine »Veterinary »genes »humans »primate »sequence

It turns out the marmoset gene WFIKKN1 exhibits changes associated with twinning in marmosets. The gene may act as a critical switch between multiples and singleton pregnancies. The finding could apply to studies of multiple pregnancies in human.

The team also looked for genetic changes associated with a unique trait found in marmosets and their close relatives, but not described in any other mammal. The dizygotic (or fraternal) twins in marmosets exchange blood stem cells called hematopoietic stem cells in utero, which leads to chimerism, a single organism composed of genetically distinct cells. The twins are full siblings, but between 10 and 50 percent of their white blood cells are actually derived from their sibling co-twin.

Marmosets also have a unique social system in which the dominant male and female serve as the primary breeders for a family, while their relatives also care for the offspring. They pick them up, carry them for long periods, and basically provide all the support allowing the breeders to reproduce again quickly. The relatives who provide the care are reproductively suppressed.

Small body size in the genes

Marmosets also have a very small body size. The genome sequence showed this may be the result of positive selection in five growth hormone/insulin-like growth factor axis genes (GH-IGF) with potential roles in producing small body size. Additionally, the team identified a cluster of genes that affect metabolic rates and body temperatures, adaptations associated with challenges of small body size.

Study provides new information on microRNAs

The study also provides new information about microRNAs, small non-coding RNA molecules which function to regulate of gene expression. “There has not been much research conducted on microRNAs in nonhuman primates, so we found this particularly important,” says Kim Worley, professor in the Human Genome Sequencing Center at Baylor College.

The team found marmosets exhibit a significant number of differences in microRNAs and their gene targets compared with humans, with two large clusters potentially involved in reproduction.

“We study primate genomes to get a better understanding of the biology of the species that are most closely related to humans,” says Jeffrey Rogers, associate professor in the Human Genome Sequencing Center at Baylor and a lead author of the report. “The previous sequences of the great apes and macaques, which are very closely related to humans on the primate evolutionary tree, have provided remarkable new information about the evolutionary origins of the human genome and the processes involved.”

The article „The Common Marmoset Genome Provides Insight into Primate Biology and Evolution“ was published on the 20th of July 2014 in the journal Nature Genetics.

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms.

Scientific Contact:
Dr. Carolin Kosiol
Institute of Population Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 20577-4331
M +43 6763651877

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153

Weitere Informationen:

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: Genome Medicine Veterinary genes humans primate sequence

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>