Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marmoset sequence sheds new light on primate biology and evolution

21.07.2014

An international team of scientists led by the Baylor College of Medicine and Washington University St. Louis, including a researcher from the University of Veterinary Medicine, Vienna have completed the genome sequence of the common marmoset – the first sequence of a New World Monkey – providing new information about the marmoset’s unique rapid reproductive system, physiology and growth shedding new light on primate biology and evolution. The team published the work in the journal Nature Genetics.

With the sequence of the marmoset, the team revealed for the first time the genome of a non-human primate in the New World monkeys, which represents a separate branch in the primate evolutionary tree that is more distant from humans than those whose genomes have been studied in detail before. The sequence allows researchers to broaden their ability to study the human genome and its history as revealed by comparison with other primates.


The common marmoset is a non-human primate that belongs to the branch of New World Monkeys.

Photo: Hans Novak / Haus des Meeres

The biology of twinning

The study revealed unique genetic characteristics observed in the marmoset, including several genes that are likely responsible for their ability to consistently reproduce multiple births. Unlike humans, marmosets consistently give birth to twins without the association of any medical issues.

... more about:
»Genome »Medicine »Veterinary »genes »humans »primate »sequence

It turns out the marmoset gene WFIKKN1 exhibits changes associated with twinning in marmosets. The gene may act as a critical switch between multiples and singleton pregnancies. The finding could apply to studies of multiple pregnancies in human.

The team also looked for genetic changes associated with a unique trait found in marmosets and their close relatives, but not described in any other mammal. The dizygotic (or fraternal) twins in marmosets exchange blood stem cells called hematopoietic stem cells in utero, which leads to chimerism, a single organism composed of genetically distinct cells. The twins are full siblings, but between 10 and 50 percent of their white blood cells are actually derived from their sibling co-twin.

Marmosets also have a unique social system in which the dominant male and female serve as the primary breeders for a family, while their relatives also care for the offspring. They pick them up, carry them for long periods, and basically provide all the support allowing the breeders to reproduce again quickly. The relatives who provide the care are reproductively suppressed.

Small body size in the genes

Marmosets also have a very small body size. The genome sequence showed this may be the result of positive selection in five growth hormone/insulin-like growth factor axis genes (GH-IGF) with potential roles in producing small body size. Additionally, the team identified a cluster of genes that affect metabolic rates and body temperatures, adaptations associated with challenges of small body size.

Study provides new information on microRNAs

The study also provides new information about microRNAs, small non-coding RNA molecules which function to regulate of gene expression. “There has not been much research conducted on microRNAs in nonhuman primates, so we found this particularly important,” says Kim Worley, professor in the Human Genome Sequencing Center at Baylor College.

The team found marmosets exhibit a significant number of differences in microRNAs and their gene targets compared with humans, with two large clusters potentially involved in reproduction.

“We study primate genomes to get a better understanding of the biology of the species that are most closely related to humans,” says Jeffrey Rogers, associate professor in the Human Genome Sequencing Center at Baylor and a lead author of the report. “The previous sequences of the great apes and macaques, which are very closely related to humans on the primate evolutionary tree, have provided remarkable new information about the evolutionary origins of the human genome and the processes involved.”

The article „The Common Marmoset Genome Provides Insight into Primate Biology and Evolution“ was published on the 20th of July 2014 in the journal Nature Genetics. http://dx.doi.org/10.1038/ng.3042

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Dr. Carolin Kosiol
Institute of Population Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 20577-4331
M +43 6763651877
carolin.kosiol@vetmeduni.ac.at

Released by:
Susanna Kautschitsch
Science Communication / Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.kautschitsch@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Dr. Susanna Kautschitsch | idw - Informationsdienst Wissenschaft

Further reports about: Genome Medicine Veterinary genes humans primate sequence

More articles from Life Sciences:

nachricht Learning from Nature: Genomic database standard alleviates search for novel antibiotics
02.09.2015 | Max-Planck-Institut für marine Mikrobiologie

nachricht Orang-utan females prefer cheek-padded males
02.09.2015 | Max Planck Institute for Evolutionary Anthropology, Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

International research project gets high level of funding

02.09.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>