Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marking Tissue-Specific Genes in Embryonic Stem Cells Crucial to Ensure Proper Function

18.12.2009
Tissue-specific genes, thought to be dormant or not marked for activation in embryonic stem cells, are indeed marked by transcription factors, with proper marking potentially crucial for the function of tissues derived from stem cells.

The finding in the study by researchers at the Broad Stem Cell Research Center involves a class of genes whose properties previously were thought to be unimportant for stem cell function. Most research has instead focused on genes that regulate a pluripotency network and genes that regulate differentiation of embryonic stem cells into other cell lineages.

The Broad center researchers focused on a third class of genes, those expressed only in defined cell types or tissues, which generally remain silent until long after embryonic stem cells have differentiated into specific cell lineages.

“Although prior models suggested that the cascade of events leading to the activation of tissue-specific genes doesn’t begin until embryonic stem cells have differentiated, our findings support a new hypothesis in which the competence of these genes for expression is dependent on specific marks established in the pluripotent state,” said Stephen Smale, a professor of microbiology, immunology and molecular genetics and senior author of the study. “If this hypothesis is correct, the proper marking of tissue-specific genes may be essential for pluripotency and the efficient differentiation of stem cells into clinically usable cell types and tissues.”

The study is published in the Dec. 15, 2009 issue of the peer-reviewed journal Genes and Development.

Prior to this study, typical tissue-specific genes were believed to have no critical interactions and exist in a base state in embryonic stem cells, sitting silently in the cell waiting to be “marked” by proteins that set in motion a cascade of molecular events. However, Smale and his team unexpectedly identified protein marks on these genes in stem cells and obtained striking evidence that the absence of these stem cell marks compromises gene expression in stem cell-derived tissues. The finding that these genes were already marked was surprising, Smale said.

“This finding may help us understand what it really means to be pluripotent,” Smale said. “True pluripotency may depend on faithful marking in pluripotent stem cells of many or all genes within the human genome.”

This could be particularly important for those seeking to use embryonic stem cells or reprogrammed cells, called induced pluripotent stem (iPS) cells, to treat diseases or in regenerative medicine. The stem cell marks may ensure that the end result – a beta cell to treat diabetes, a neuron for Parkinson’s disease, or a cardiac cell for heart problems – is a fully functional cell operating at 100 percent of its potential.

“We really do need to pay attention to these genes at the outset,” Smale said. “Although silent in stem cells, their properties appear to be very important.”

This study was funded by a grant from the National Institutes of Health and a training grant from the California Institute of Regenerative Medicine to Jian Xu, lead author on the study. Other key participants included Kenneth Zaret from the University of Pennsylvania and Kathrin Plath from the Broad Stem Cell Research Center.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA’s Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu.

Kim Irwin | Newswise Science News
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>