Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Marking Tissue-Specific Genes in Embryonic Stem Cells Crucial to Ensure Proper Function

Tissue-specific genes, thought to be dormant or not marked for activation in embryonic stem cells, are indeed marked by transcription factors, with proper marking potentially crucial for the function of tissues derived from stem cells.

The finding in the study by researchers at the Broad Stem Cell Research Center involves a class of genes whose properties previously were thought to be unimportant for stem cell function. Most research has instead focused on genes that regulate a pluripotency network and genes that regulate differentiation of embryonic stem cells into other cell lineages.

The Broad center researchers focused on a third class of genes, those expressed only in defined cell types or tissues, which generally remain silent until long after embryonic stem cells have differentiated into specific cell lineages.

“Although prior models suggested that the cascade of events leading to the activation of tissue-specific genes doesn’t begin until embryonic stem cells have differentiated, our findings support a new hypothesis in which the competence of these genes for expression is dependent on specific marks established in the pluripotent state,” said Stephen Smale, a professor of microbiology, immunology and molecular genetics and senior author of the study. “If this hypothesis is correct, the proper marking of tissue-specific genes may be essential for pluripotency and the efficient differentiation of stem cells into clinically usable cell types and tissues.”

The study is published in the Dec. 15, 2009 issue of the peer-reviewed journal Genes and Development.

Prior to this study, typical tissue-specific genes were believed to have no critical interactions and exist in a base state in embryonic stem cells, sitting silently in the cell waiting to be “marked” by proteins that set in motion a cascade of molecular events. However, Smale and his team unexpectedly identified protein marks on these genes in stem cells and obtained striking evidence that the absence of these stem cell marks compromises gene expression in stem cell-derived tissues. The finding that these genes were already marked was surprising, Smale said.

“This finding may help us understand what it really means to be pluripotent,” Smale said. “True pluripotency may depend on faithful marking in pluripotent stem cells of many or all genes within the human genome.”

This could be particularly important for those seeking to use embryonic stem cells or reprogrammed cells, called induced pluripotent stem (iPS) cells, to treat diseases or in regenerative medicine. The stem cell marks may ensure that the end result – a beta cell to treat diabetes, a neuron for Parkinson’s disease, or a cardiac cell for heart problems – is a fully functional cell operating at 100 percent of its potential.

“We really do need to pay attention to these genes at the outset,” Smale said. “Although silent in stem cells, their properties appear to be very important.”

This study was funded by a grant from the National Institutes of Health and a training grant from the California Institute of Regenerative Medicine to Jian Xu, lead author on the study. Other key participants included Kenneth Zaret from the University of Pennsylvania and Kathrin Plath from the Broad Stem Cell Research Center.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA’s Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at To learn more about the center, visit our web site at

Kim Irwin | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>