Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marking Folded Proteins for Basic Alzheimer’s Studies

21.10.2008
Biochemists Lila Gierasch and Beena Krishnan at the University of Massachusetts Amherst have found a way to slip a fluorescent marker into one of a cell’s molecular machines so it lights up when it has formed the proper shape to carry out the cell’s “work orders.”

The new technique should allow labeling of correctly folded proteins in a living cell or similar natural environment to study the origins of protein-misfolding diseases such as cystic fibrosis, Alzheimer’s and Parkinson’s.

Findings of Gierasch, a distinguished professor of biochemistry and molecular biology, and Beena Krishnan, a postdoctoral fellow, appear today in the journal, Chemistry and Biology.

Cells, once thought to be simple watery bags, are now understood to be more like a thick porridge of protein chains, nucleic acids, membranes and other components. This makes it extremely difficult to observe the delicate protein-folding process, according to Gierasch, who says it’s like trying to watch knot-tying in a microscopic bowl of spaghetti. By discovering how to mark certain protein segments with naturally fitting fluorescent inserts, she and Krishnan have created what they call a “structure sensor.” It lights up only when the protein is perfectly folded, allowing it to be seen against the background of cellular complexity.

Proteins carry out thousands of normal cell operations by folding themselves into different three-dimensional, origami-like shapes matched to a single job as a key fits a lock. It’s believed that misfolding occurs regularly and when a cell detects mistakes, it just recycles protein parts and uses them again. However, if a certain misfolded key somehow gets past the cell’s “quality control,” Gierasch notes, proteins may aggregate or clump, with devastating results that include neurodegenerative diseases and other pathologies.

Fluorescent marking isn’t a new technique, but Gierasch and Krishnan applied it in a new way, snipping a segment of naturally occurring protein and replacing it with what they dub a “cross-strand tetra-Cys motif.” When the two parts of the motif settle near each other when properly folded, the dye binds and gives off light. Interestingly, the FlAsH dye Krishnan and Gierasch used was developed by Roger Tsien, winner of the recently announced 2008 Nobel Prize in chemistry.

Medical researchers around the world who use the new method will be able to set up a series of protein-folding experiments. By varying factors in each experiment and using the “structure sensor” to check results, they’ll piece together how protein misfolding leads to disease.

“We took on the challenge in 2004 to look for a way to see a protein inside a living cell and watch as it folds without interfering with the natural process,” Gierasch notes. Their laboratory is one of only a handful around the country working on the problem. “Clinical researchers know that you can get sick from mistakes in folding, but we don’t know how, because until now we couldn’t begin to watch the correct cascade or pinpoint mistakes in it, in order to understand the illness.” In 2006, Gierasch received a National Institutes of Health Director’s Pioneer Award of $2.5 million for her research on protein folding in the cell.

Lila Gierasch | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>