Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New marker identified for early diagnosis of lung cancer

17.09.2013
A protein called isocitrate dehydrogenase (IDH1) is present at high levels in lung cancers and can be detected in the blood, making it a noninvasive diagnostic marker for lung cancers, according to a study published in Clinical Cancer Research, a journal of the American Association for Cancer Research.

"This study is the first to report identification of IDH1 as a novel biomarker for the diagnosis of non-small cell lung cancers (NSCLC) using a large number of clinical samples," said Jie He, M.D., Ph.D., director of the Laboratory of Thoracic Surgery at the Peking Union Medical College and Chinese Academy of Medical Sciences in Beijing.

"Lung cancer has a high mortality rate, mostly because of late diagnosis. With an increase in aging population, we are likely to see an increase in lung cancer incidence and a need for better biomarkers for early diagnosis. We have identified IDH1 as an effective plasma biomarker with high sensitivity and specificity in the diagnosis of NSCLC, especially lung adenocarcinoma."

Lung cancer is the leading cause of cancer deaths in both men and women in the United States and worldwide. To detect lung cancer in blood, currently certain biomarkers including CEA, Cyfra21-1 and CA125 are used, but these markers are not very sensitive, according to He.

He and colleagues found that IDH1 could be detected in the blood of lung cancer patients with 76 percent sensitivity and 77 percent specificity. When they used a mathematical model to combine the detection of IDH1 with the detection of existing markers CEA, Cyfra21-1, and CA125, the sensitivity increased to 86 percent.

"Based on the present data, IDH1 can be used to detect stage 1 lung cancer; however, it is also possible that IDH1 could be used to detect precancer but further studies are required to address that possibility," said He.

He and colleagues used blood samples collected from 943 patients with NSCLC and 479 healthy controls, enrolled between 2007 and 2011 in the Cancer Institute and Hospital of the Chinese Academy of Medical Sciences. None of the study participants had a cancer diagnosis, nor were they treated for cancer in the three years prior to the study. Using methods called ELISA and ECL, they measured the levels of IDH1, CEA, Cyfra21-1, and CA125 in the participants' blood.

The researchers then divided the samples into a training set and a test set to validate the detection efficiency of IDH1. They found the data obtained from the test set were as good as those from the training set, demonstrating the robustness of IDH1 as a biomarker for lung cancer diagnosis.

The median IDH1 levels in patients with two types of lung cancer, adenocarcinoma and squamous cell carcinoma, were 2.7-fold and 2.2-fold higher, respectively, compared with healthy controls.

The researchers also found that combining the detection of all four markers — IDH1, CEA, Cyfra21-1, and CA125 — helped to better classify different types of adenocarcinoma, compared with detection with IDH1 alone.

He and colleagues are planning to conduct a multicenter clinical trial for further validation of IDH1.

"Our research also suggests IDH1 may be involved in the development of lung cancer, and it may be a good target for the treatment of NSCLC," said He. His team is currently studying the molecular mechanisms that increase IDH1 in lung cancer patients and its clinical implications.

This study was funded by the National High Technology Research and Development Program of China, the International Science and Technology Corporation and Exchange Project, the National Natural Science Foundation of China, the Doctoral Fund of Ministry of Education of China, and the Government Health Care Research Foundation for Senior Officials.

Follow the AACR on Twitter: @AACR
Follow the AACR on Facebook: http://www.facebook.com/aacr.org
About the American Association for Cancer Research
Founded in 1907, the American Association for Cancer Research (AACR) is the world's oldest and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 34,000 laboratory, translational, and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in more than 90 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis, and treatment of cancer by annually convening more than 20 conferences and educational workshops, the largest of which is the AACR Annual Meeting with more than 18,000 attendees. In addition, the AACR publishes eight peer-reviewed scientific journals and a magazine for cancer survivors, patients, and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the scientific partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration, and scientific oversight of team science and individual grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit http://www.AACR.org.

Jeremy Moore | EurekAlert!
Further information:
http://www.aacr.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>