Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better marker for breast cancer may reduce need for second surgeries

20.09.2010
A new material could help surgeons more accurately locate breast cancers, reduce the need for second surgeries and minimize pre-surgical discomfort for patients. Microscopic gas-filled spheres of silica, a porous glass, can mark the location of early-stage tumors to show their position using ultrasound imaging in the operating room.

A team of chemists, radiologists and surgeons at the University of California, San Diego, created the new material, which they describe in a forthcoming issue of the journal MedChemComm.

The X-rays used to make mammograms reveal calcium deposits associated with breast cancer even in tumors too small to be felt. But surgeons can't use X-rays while operating. Instead, radiologists place guide wires into tumors hours or even the day before surgery. The wires don't mark depth well and can shift. Patients find them both uncomfortable and unsettling.

As an alternative, the researchers created spheres of silica and filled them with perfluoropentane, a gas that has been used before in short-lived contrast materials for medical imaging. The rigid silica shells help the new material last longer.

... more about:
»Cancer »UCSD »X-rays »breast cancer »lymph node

"These little gas-filled microbubbles stick to human breast tissue for days and can be seen with ultrasound," said William Trogler, professor chemistry. "If doctors placed them in early stage breast cancer, which is difficult to see during surgery, they could help surgeons remove all of it in the first operation."

In the past few years, radiologists have tried implanting radioactive "seeds" instead of wires to mark tumors, but the seeds last only a few hours and must be inserted with a large-bore needle, which is painful. In addition, only one abnormal region can be marked, but patients with a form of breast cancer called ductal in situ carcinoma often have several. The seeds also expose both patient and staff to radiation, can't been imaged in three dimensions and create radioactive medical waste.

At just two micrometers in diameter – half the width of a strand of spider silk – small silica microbubbles can be precisely injected into clusters of abnormal cells using a thin needle. Radiologists would be able to inject the durable material days before surgery. And ultrasound scans reveal the position of the bubble in three dimensions on the operating table.

"Instead of just using a Geiger-counterlike device to say you're getting closer to the radioactive seed, you could actually see where to carve," said Andrew Kummel, professor of chemistry. The increased precision should help surgeons avoid the need for second surgeries.

"By outlining the tumor more completely in multiple directions, the particles could potentially help surgeons remove non-palpable tumors in a single operation," said Sarah Blair, a surgeon at Moores UCSD Cancer Center. "They will definitely make the operation more comfortable for patients."

The researchers think the ultrasound pressure waves burst the microbubbles. "They're thin, fragile balls of porous glass, like Christmas tree ornaments," Kummel said. "The shell is just one two-hundredth of the diameter of the ball. When it breaks, the gas squirts out. Doppler ultrasound detects that movement."

Nano-scale silica microbubbles, which the team reports in this paper as well, are too small to remain in place, but might drain from a cancerous site to help identify which lymph nodes are most likely to contain stray cells that could help the cancer spread.

The current study demonstrates the feasibility of the technology in tissue samples. Tests in animal models are underway, and toxicology studies must also be completed before clinical trials in humans could begin.

Chemists Bill Trogler, and Andy Kummel, of UCSD's Division of Physical Sciences, and radiologist Robert Mattrey and surgeon Sarah Blair of the Moores UCSD Cancer Center led the project. Additional co-authors include radiologist Yuko Kono, and Sergio Sandoval, Moores UCSD Cancer Center; Paul Martinez of the Department of Chemistry and Biochemistry; and Jessica Wang-Rodriguez of the Department of Pathology.

The National Cancer Institute provided financial support for this study.

Susan Brown | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Cancer UCSD X-rays breast cancer lymph node

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>