Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New marker for Alzheimer's discovered

14.09.2009
Gothenburg researchers have discovered a previously unknown substance in spinal fluid that can be used to diagnose Alzheimer's disease. The findings, described in a thesis from the Sahlgrenska Academy at the University of Gothenburg, Sweden, will also be useful in research on new medications.

The substance is a beta-amyloid protein called Abeta16. The thesis shows in two independent studies that Alzheimer's patients have higher levels of the protein in their spinal fluid than do healthy individuals.

'The discovery of the new protein could be used to diagnose patients with Alzheimer's and also help determine which medications are most effective for the disease', says biochemist Erik Portelius, the author of the thesis.

Alzheimer's disease includes the formation of plaque on the brain. Neurons and other cell types form around 20 different beta-amyloid proteins, and these are excreted into the spinal fluid around the brain.

'These types of beta-amyloid proteins can be analysed with great precision, and our research team has also shown that the analyses can be used to distinguish between Alzheimer's patients and healthy individuals with a high degree of accuracy', says Portelius.

The beta-amyloid protein Abeta42 is particularly prevalent in the plaque. Abeta42 is created when a larger protein is cut into pieces by certain enzymes. The new Alzheimer's drugs that are currently being tested aim to reduce the production of Abeta42 by blocking these enzymes. Portelius found that these drugs increase the level of the newly discovered Abeta16.

'Abeta42 and Abeta16 are formed from the same precursor molecule, but the enzymatic process is different and Abeta16 is not harmful. The finding that Abeta16 is a very sensitive biomarker for the effect of these drugs may become very useful in future treatment studies', says Portelius.

The research was conducted in the proteomics lab at the neurochemistry unit in Mölndal, Sweden.

ABOUT ALZHEIMER'S DISEASE
Alzheimer's disease is one of our most common diseases, affecting more than 100 000 Swedes. The disease is caused by harmful changes in the nerve cells of the brain. Memory loss is very common, and so is premature death. Alzheimer's not only causes severe suffering among patients and their families, it also leads to enormous costs for society.
For more information, please contact:
Erik Portelius, biochemist, telephone +46 (0)31 343 23 90, +46 (0)70 480 00 59, erik.portelius@neuro.gu.se
Supervisor:
Professor Kaj Blennow, telephone +46 (0)31 343 17 91, kaj.blennow@neuro.gu.se
Thesis for the degree of Doctor of Medical Science at the Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry.
Title of the thesis: Targeted ABeta proteomics - a tool to study the pathogenesis of Alzheimer's disease
Link to thesis
http://hdl.handle.net/2077/20444

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/20444

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>