Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine worms reveal the deepest evolutionary patterns

09.10.2012
Scientists from the universities of Bath and Lincoln have revealed new findings on the evolutionary relationships and structure of priapulids – a group of carnivorous mud-dwelling worms living in shallow marine waters.

The research, carried out by evolutionary biologists Dr Matthew Wills, Dr Sylvain Gerber, Mr Martin Hughes (all University of Bath) and Dr Marcello Ruta (University of Lincoln), features in the October issue of Journal of Evolutionary Biology.


Priapulid by Bruno Vellutini, Sars Centre, Bergen Norway

Dr Wills first pioneered a study on existing and extinct priapulids in 1998. Fourteen years on, the team looked at a new and expanded data set of anatomical features to see how knowledge of these worms has been affected by new fossil finds.

He explained: “The fossils from the Cambrian period can cause a real headache for evolutionary biologists. Instinct tells us to expect simple organisms evolving over time to become increasingly more complex. However during the Cambrian period there was an apparent explosion of different major groups of animals, all appearing simultaneously in the fossil record. We looked at priapulid worms, which were among the first ever predators. What’s remarkable is that they had already evolved into a diverse array of forms – comparable to the morphological variety of their living cousins – when we first encounter them in the Cambrian fossil record. It’s precisely this apparent explosion of anatomical diversity that vexed Darwin and famously attracted the attention of Harvard biologist Stephen Jay Gould.”

Dr Ruta, from the School of Life Sciences at the University of Lincoln, continued: “Our work has shown that despite many new fossil finds, including many from China in the last decade, the picture remains largely unchanged. This is really important because the fossil record is notoriously incomplete. It is often difficult to know whether a pattern is just an artifact of this incompleteness, or biologically meaningful. Our study resolutely confirms the latter. Priapulids are fascinating animals with much potential in evolutionary studies. They have a long history, with the earliest known species being 505 million years old, and with some of their extinct relatives being even older. They were important components of ancient bottom-dwelling marine invertebrate communities, and their predatory habits are well documented in the fossil record. However, for all their abundance and diversity, priapulids are a remarkable and often cited example of a morphologically conservative group, their overall shape and proportions having changed relatively little during their history. This research will help us to understand evolutionary patterns in ‘deep time’. This is looking at the tempo (evolutionary rates) and mode (the study of the way, manner or pattern of evolution) to uncover the ancient events when organisms first began to diversify and break from one another. For example, what makes a mammal a mammal and so on.”

The research gives prominence to the importance of an adequate and unbiased inclusion of data, where possible, from both fossil and living species in assembling evolutionary family trees. Fossils inform our understanding of evolutionary patterns and processes, and show unique morphological traits that are no longer observed in living species.

Dr Ruta added: “Detailed scrutiny of other groups of organisms is needed, in order to decipher the rate at which structural, functional and ecological changes occur and how acquisition of new traits impact on group diversification. Ultimately, combined results from these investigations will offer a solid framework for understanding the very roots of Life’s grandeur and the astounding variety of species alive today.”

The full article can be accessed online at:
http://onlinelibrary.wiley.com/doi/10.1111/jeb.2012.25.issue-10/issuetoc
Full bibliographic informationM. A. Wills, S. Gerber, M. Ruta, M. Hughes. ‘The disparity of priapulid, archaeopriapulid and palaeoscolecid worms in the light of new data’ published in the Journal of Evolutionary Biology, Volume 25, Issue 10, pages 2,056–2,076, October 2012. DOI: 10.1111/j.1420-9101.2012.02586.x

Marie Daniels | alfa
Further information:
http://www.lincoln.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>