Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine worms reveal the deepest evolutionary patterns

09.10.2012
Scientists from the universities of Bath and Lincoln have revealed new findings on the evolutionary relationships and structure of priapulids – a group of carnivorous mud-dwelling worms living in shallow marine waters.

The research, carried out by evolutionary biologists Dr Matthew Wills, Dr Sylvain Gerber, Mr Martin Hughes (all University of Bath) and Dr Marcello Ruta (University of Lincoln), features in the October issue of Journal of Evolutionary Biology.


Priapulid by Bruno Vellutini, Sars Centre, Bergen Norway

Dr Wills first pioneered a study on existing and extinct priapulids in 1998. Fourteen years on, the team looked at a new and expanded data set of anatomical features to see how knowledge of these worms has been affected by new fossil finds.

He explained: “The fossils from the Cambrian period can cause a real headache for evolutionary biologists. Instinct tells us to expect simple organisms evolving over time to become increasingly more complex. However during the Cambrian period there was an apparent explosion of different major groups of animals, all appearing simultaneously in the fossil record. We looked at priapulid worms, which were among the first ever predators. What’s remarkable is that they had already evolved into a diverse array of forms – comparable to the morphological variety of their living cousins – when we first encounter them in the Cambrian fossil record. It’s precisely this apparent explosion of anatomical diversity that vexed Darwin and famously attracted the attention of Harvard biologist Stephen Jay Gould.”

Dr Ruta, from the School of Life Sciences at the University of Lincoln, continued: “Our work has shown that despite many new fossil finds, including many from China in the last decade, the picture remains largely unchanged. This is really important because the fossil record is notoriously incomplete. It is often difficult to know whether a pattern is just an artifact of this incompleteness, or biologically meaningful. Our study resolutely confirms the latter. Priapulids are fascinating animals with much potential in evolutionary studies. They have a long history, with the earliest known species being 505 million years old, and with some of their extinct relatives being even older. They were important components of ancient bottom-dwelling marine invertebrate communities, and their predatory habits are well documented in the fossil record. However, for all their abundance and diversity, priapulids are a remarkable and often cited example of a morphologically conservative group, their overall shape and proportions having changed relatively little during their history. This research will help us to understand evolutionary patterns in ‘deep time’. This is looking at the tempo (evolutionary rates) and mode (the study of the way, manner or pattern of evolution) to uncover the ancient events when organisms first began to diversify and break from one another. For example, what makes a mammal a mammal and so on.”

The research gives prominence to the importance of an adequate and unbiased inclusion of data, where possible, from both fossil and living species in assembling evolutionary family trees. Fossils inform our understanding of evolutionary patterns and processes, and show unique morphological traits that are no longer observed in living species.

Dr Ruta added: “Detailed scrutiny of other groups of organisms is needed, in order to decipher the rate at which structural, functional and ecological changes occur and how acquisition of new traits impact on group diversification. Ultimately, combined results from these investigations will offer a solid framework for understanding the very roots of Life’s grandeur and the astounding variety of species alive today.”

The full article can be accessed online at:
http://onlinelibrary.wiley.com/doi/10.1111/jeb.2012.25.issue-10/issuetoc
Full bibliographic informationM. A. Wills, S. Gerber, M. Ruta, M. Hughes. ‘The disparity of priapulid, archaeopriapulid and palaeoscolecid worms in the light of new data’ published in the Journal of Evolutionary Biology, Volume 25, Issue 10, pages 2,056–2,076, October 2012. DOI: 10.1111/j.1420-9101.2012.02586.x

Marie Daniels | alfa
Further information:
http://www.lincoln.ac.uk

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>