Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine snails get a metabolism boost

04.05.2011
Most of us wouldn't consider slow-moving snails to be high-metabolism creatures. But at one point in the distant past, snail metabolism sped up, says a new study of marine snails in the journal Paleobiology.

"Many of the marine snails we recognize today — such as abalone, conchs, periwinkles and whelks — require more than twice as much energy to survive as their ancestors did," said co-author Seth Finnegan of the California Institute of Technology.

The findings come from a new analysis of snail fossils formed one to two hundred million years ago, during a period dubbed the Marine Mesozoic Revolution.

Estimating the metabolism of an animal that lived millions of years ago isn't easy. But body size gives us a clue, the authors said. In animals alive today, animals with bigger bodies tend to have higher basal metabolic rates, they explained.

"Bigger-bodied creatures simply require more calories to carry out basic functions," Finnegan said.

By assembling a database of several thousand species of living and extinct snails, the researchers were able to compile body size measurements from the snail fossil record stretching back more than 200 million years, and compare them to physiological data from different-sized snails living today.

The overall trend? Between 200 and 80 million years ago, the resting metabolic rate of tropical marine snails more than doubled, said co-author Jonathan Payne of Stanford University.

The driving force for this change was probably diet, the authors argue. Clues from fossilized shells suggest that prior to this time, most marine snails fed on plants and decaying organic matter. Then, over time, some snails evolved to feed on each other, Finnegan explained.

"To the best our ability to tell from their fossilized remains, almost none of the snails that lived prior to the Marine Mesozoic Revolution were predatory," Finnegan said. "Then the snails that really began to diversify during this period were dominated largely by predatory groups."

The evolutionary arms race between snail predators and their prey drove them to rev up their metabolic rates, Payne explained.

"As predators evolved to be faster and stronger, and prey evolved thicker, more reinforced shells to avoid being eaten, they had to use more and more energy to survive," he said.

The next step will be to see if the same trends can be found in other animals too, the authors added.

"Marine snails are one of the most diverse groups of animals out there, but we should see the same trend in other well-preserved animals too," said co-author Craig McClain of the National Evolutionary Synthesis Center in Durham, NC.

The team's findings appear in the May 2011 issue of Paleobiology.

Matthew Kosnik of Macquarie University, New South Wales, Australia was also an author on this study.

CITATION: Finnegan, S., C. McClain, et al. (2011). "Escargots through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution." Paleobiology 37(2): 252-269. DOI: 10.1666/09066.1

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht Opening the cavity floodgates
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Incentive to Move
23.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks Industry & Economy
Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Researchers reveal how microbes cope in phosphorus-deficient tropical soil

23.01.2018 | Earth Sciences

Opening the cavity floodgates

23.01.2018 | Life Sciences

Siberian scientists suggested a new method for synthesizing a promising magnetic material

23.01.2018 | Materials Sciences

VideoLinks Science & Research
Overview of more VideoLinks >>>