Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine snails get a metabolism boost

04.05.2011
Most of us wouldn't consider slow-moving snails to be high-metabolism creatures. But at one point in the distant past, snail metabolism sped up, says a new study of marine snails in the journal Paleobiology.

"Many of the marine snails we recognize today — such as abalone, conchs, periwinkles and whelks — require more than twice as much energy to survive as their ancestors did," said co-author Seth Finnegan of the California Institute of Technology.

The findings come from a new analysis of snail fossils formed one to two hundred million years ago, during a period dubbed the Marine Mesozoic Revolution.

Estimating the metabolism of an animal that lived millions of years ago isn't easy. But body size gives us a clue, the authors said. In animals alive today, animals with bigger bodies tend to have higher basal metabolic rates, they explained.

"Bigger-bodied creatures simply require more calories to carry out basic functions," Finnegan said.

By assembling a database of several thousand species of living and extinct snails, the researchers were able to compile body size measurements from the snail fossil record stretching back more than 200 million years, and compare them to physiological data from different-sized snails living today.

The overall trend? Between 200 and 80 million years ago, the resting metabolic rate of tropical marine snails more than doubled, said co-author Jonathan Payne of Stanford University.

The driving force for this change was probably diet, the authors argue. Clues from fossilized shells suggest that prior to this time, most marine snails fed on plants and decaying organic matter. Then, over time, some snails evolved to feed on each other, Finnegan explained.

"To the best our ability to tell from their fossilized remains, almost none of the snails that lived prior to the Marine Mesozoic Revolution were predatory," Finnegan said. "Then the snails that really began to diversify during this period were dominated largely by predatory groups."

The evolutionary arms race between snail predators and their prey drove them to rev up their metabolic rates, Payne explained.

"As predators evolved to be faster and stronger, and prey evolved thicker, more reinforced shells to avoid being eaten, they had to use more and more energy to survive," he said.

The next step will be to see if the same trends can be found in other animals too, the authors added.

"Marine snails are one of the most diverse groups of animals out there, but we should see the same trend in other well-preserved animals too," said co-author Craig McClain of the National Evolutionary Synthesis Center in Durham, NC.

The team's findings appear in the May 2011 issue of Paleobiology.

Matthew Kosnik of Macquarie University, New South Wales, Australia was also an author on this study.

CITATION: Finnegan, S., C. McClain, et al. (2011). "Escargots through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution." Paleobiology 37(2): 252-269. DOI: 10.1666/09066.1

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>