Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine snails get a metabolism boost

04.05.2011
Most of us wouldn't consider slow-moving snails to be high-metabolism creatures. But at one point in the distant past, snail metabolism sped up, says a new study of marine snails in the journal Paleobiology.

"Many of the marine snails we recognize today — such as abalone, conchs, periwinkles and whelks — require more than twice as much energy to survive as their ancestors did," said co-author Seth Finnegan of the California Institute of Technology.

The findings come from a new analysis of snail fossils formed one to two hundred million years ago, during a period dubbed the Marine Mesozoic Revolution.

Estimating the metabolism of an animal that lived millions of years ago isn't easy. But body size gives us a clue, the authors said. In animals alive today, animals with bigger bodies tend to have higher basal metabolic rates, they explained.

"Bigger-bodied creatures simply require more calories to carry out basic functions," Finnegan said.

By assembling a database of several thousand species of living and extinct snails, the researchers were able to compile body size measurements from the snail fossil record stretching back more than 200 million years, and compare them to physiological data from different-sized snails living today.

The overall trend? Between 200 and 80 million years ago, the resting metabolic rate of tropical marine snails more than doubled, said co-author Jonathan Payne of Stanford University.

The driving force for this change was probably diet, the authors argue. Clues from fossilized shells suggest that prior to this time, most marine snails fed on plants and decaying organic matter. Then, over time, some snails evolved to feed on each other, Finnegan explained.

"To the best our ability to tell from their fossilized remains, almost none of the snails that lived prior to the Marine Mesozoic Revolution were predatory," Finnegan said. "Then the snails that really began to diversify during this period were dominated largely by predatory groups."

The evolutionary arms race between snail predators and their prey drove them to rev up their metabolic rates, Payne explained.

"As predators evolved to be faster and stronger, and prey evolved thicker, more reinforced shells to avoid being eaten, they had to use more and more energy to survive," he said.

The next step will be to see if the same trends can be found in other animals too, the authors added.

"Marine snails are one of the most diverse groups of animals out there, but we should see the same trend in other well-preserved animals too," said co-author Craig McClain of the National Evolutionary Synthesis Center in Durham, NC.

The team's findings appear in the May 2011 issue of Paleobiology.

Matthew Kosnik of Macquarie University, New South Wales, Australia was also an author on this study.

CITATION: Finnegan, S., C. McClain, et al. (2011). "Escargots through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution." Paleobiology 37(2): 252-269. DOI: 10.1666/09066.1

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>