Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine snails get a metabolism boost

04.05.2011
Most of us wouldn't consider slow-moving snails to be high-metabolism creatures. But at one point in the distant past, snail metabolism sped up, says a new study of marine snails in the journal Paleobiology.

"Many of the marine snails we recognize today — such as abalone, conchs, periwinkles and whelks — require more than twice as much energy to survive as their ancestors did," said co-author Seth Finnegan of the California Institute of Technology.

The findings come from a new analysis of snail fossils formed one to two hundred million years ago, during a period dubbed the Marine Mesozoic Revolution.

Estimating the metabolism of an animal that lived millions of years ago isn't easy. But body size gives us a clue, the authors said. In animals alive today, animals with bigger bodies tend to have higher basal metabolic rates, they explained.

"Bigger-bodied creatures simply require more calories to carry out basic functions," Finnegan said.

By assembling a database of several thousand species of living and extinct snails, the researchers were able to compile body size measurements from the snail fossil record stretching back more than 200 million years, and compare them to physiological data from different-sized snails living today.

The overall trend? Between 200 and 80 million years ago, the resting metabolic rate of tropical marine snails more than doubled, said co-author Jonathan Payne of Stanford University.

The driving force for this change was probably diet, the authors argue. Clues from fossilized shells suggest that prior to this time, most marine snails fed on plants and decaying organic matter. Then, over time, some snails evolved to feed on each other, Finnegan explained.

"To the best our ability to tell from their fossilized remains, almost none of the snails that lived prior to the Marine Mesozoic Revolution were predatory," Finnegan said. "Then the snails that really began to diversify during this period were dominated largely by predatory groups."

The evolutionary arms race between snail predators and their prey drove them to rev up their metabolic rates, Payne explained.

"As predators evolved to be faster and stronger, and prey evolved thicker, more reinforced shells to avoid being eaten, they had to use more and more energy to survive," he said.

The next step will be to see if the same trends can be found in other animals too, the authors added.

"Marine snails are one of the most diverse groups of animals out there, but we should see the same trend in other well-preserved animals too," said co-author Craig McClain of the National Evolutionary Synthesis Center in Durham, NC.

The team's findings appear in the May 2011 issue of Paleobiology.

Matthew Kosnik of Macquarie University, New South Wales, Australia was also an author on this study.

CITATION: Finnegan, S., C. McClain, et al. (2011). "Escargots through time: an energetic comparison of marine gastropod assemblages before and after the Mesozoic Marine Revolution." Paleobiology 37(2): 252-269. DOI: 10.1666/09066.1

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>