Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine scientists from Warnemünde succeed in deciphering the microbial world of the Baltic Sea

19.09.2011
….and prove that bacteria do not follow the textbook rules describing the salinity/ diversity relationship of aquatic animals and plants

….and discover the apparently most abundant organism of the Baltic Sea – a bacterium unknown until now.

In a comprehensive measuring campaign, the microbiologists Daniel Herlemann, Matthias Labrenz and Klaus Jürgens, from the Leibniz Institute for Baltic Sea Research in Warnemünde, together with Swedish colleagues have succeeded in sampling microorganisms from the entire Baltic Sea, from the southwestern marine Skagerrag to the northern freshwaters of the Bothnian Bay. The respective bacterial communities were analyzed by means of state-of-the-art "high-throughput sequencing technologies." Thus, the Baltic Sea is the first sea in which all of the microbial inhabitants have been completely inventoried.

The results, which were published very recently, are astonishing: unlike the Baltic Sea's fauna and flora, its bacteria are unimpressed by the varying salinity that prevails in the Baltic. Indeed, while many organisms avoid the intermediate salinities (between freshwater and saltwater) that are characteristic of the central Baltic—which explains the minimal diversity under brackish water conditions—bacteria clearly differ in that under these conditions they show a constant species diversity.

Similarly, although typical marine or limnic bacterial assemblages become less diverse beyond the fully marine or limnic margins of the Baltic Sea, bacterial diversity remains high in the brackish water of the Baltic Proper because of the presence of species adapted to these conditions.

Among these, one bacterium was discovered that seems to thrive extraordinarily well in the Baltic Proper: this remarkably abundant organism belongs to the group of Verrucomicrobia, which was previously mainly found in lakes and soils. The function of this newly discovered and highly abundant bacterium is, at the moment, obscure. Moreover, in addition to the lack of cultivated representatives, specific sequences of the closest related isolate of the Verrucomicrobia group and those of the newly discovered organism differ by 12%.

The results support the notion that bacteria are well-equipped to cope with the challenging transitional area between freshwater and saltwater in the Baltic Sea and that, in contrast to higher organisms, there is no decline in their number of species under these conditions. Thus, the rapid and flexible adaptability of bacteria enables them to occupy ecological niches to which higher organisms have only limited access.

The results were published in the article: “Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea” Daniel PR Herlemann, Matthias Labrenz, Klaus Jürgens, Stefan Bertilsson, Joanna J Waniek and Anders F Andersson. The ISME Journal, (published online 7 April 2011) | doi:10.1038/ismej.2011.41

Contact:
Dr. Daniel Herlemann, +49 381 / 5197 209
PD Dr. Matthias Labrenz, +49 381 / 5197 378
Prof. Dr. Klaus Jürgens, +49 381 / 5197 250
Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde
or
Dr. Barbara Hentzsch, +49 381 / 5197 102
Directorate / Public Relation, Leibniz Institute for Baltic Sea Research Warnemünde

The IOW is member of the Leibniz Association, a network of 87 scientifically, legally and economically independent research institutes and scientific service facilities. Leibniz Institutes perform strategic-and thematically-oriented research and offer scientific services of national significance while striving to provide scientific solutions to major social challenges.

The 16,800 employees of the Leibniz Institutes include 7,800 academics, with 3,300 junior scientists. One indication of the Leibniz Institutes' strong competitiveness and excellence is the 330 million Euros allocated to them from third-party funds. The total budget of all Leibniz Institutes amounts to more than 1.4 billion Euros.

Leibniz Institutes contribute to clusters of excellence in fields such as mathematics, optic technologies, materials research, medicine, climate and environmental research, and bio- and nanotechnology as well as the humanities, economics, and social sciences. They foster close co-operations with universities, industry, and other research institutes, both in Germany and abroad. The Leibniz Association has developed a comprehensive system of quality management in which, at regular intervals, independent experts assess every institute as part of the Association's unique peer review evaluation process.

Dr. Barbara Hentzsch | idw
Further information:
http://www.leibniz-association.eu
http://www.io-warnemuende.de

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>