Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine plankton found in amber

13.11.2008
Marine microorganisms have been found in amber dating from the middle of the Cretaceous period. The fossils were collected in Charente, in France.

This completely unexpected discovery will deepen our understanding of these lost marine species as well as providing precious data about the coastal environment of Western France during the Cretaceous.

This work was carried out by researchers at the Géosciences Rennes laboratory (CNRS/Université de Rennes 1), together with researchers from the Paléobiodiversité et Paléoenvironnement laboratory in Paris (CNRS/Muséum national d’histoire naturelle/Université Pierre et Marie Curie) and the Centre de Géochimie de la Surface in Strasbourg (CNRS/Université de Strasbourg 1). It was published in the 11 November 2008 issue of PNAS.

Amber is a fossil resin with a reputation for preserving even the most minute details of insects and other terrestrial arthropods (spiders, scorpions, mites) that lived in resiniferous trees. The forest-based provenance of amber in theory makes it impossible for marine animals to be trapped in the resin. Nonetheless, researchers from the Géosciences Rennes laboratory have discovered various inclusions of marine plankton in amber from the Mid-Cretaceous (100 to 98 million years BP).

These micro-organisms are found in just a few pieces of amber among the thousands that have been studied, but show a remarkable diversity: unicellular algae, mainly diatoms found in large numbers, traces of animal plankton, such as radiolaria and a foraminifer, spiny skeletons of sponges and of echinoderms.

Carried out together with researchers at the Muséum national d’histoire naturelle, the study of diatoms pushed back by 10 to 30 million years the known date for the appearance of certain marine forms of this type of algae. This new information, taken together with recent data on molecular phylogeny, marks a huge advance in our understanding of the complex evolutionary history of diatoms.

The presence of these marine organisms in the amber is an ecological paradox. How did these marine species become stuck and then trapped in the conifers’ resin? The most likely scenario is that the forest producing the amber was very close to the coast, potentially shrouded by plankton-bearing mist or flooded by sea water during storms.

The preservation of marine organisms in amber is an exceptional asset, allowing us to deepen our understanding of these lost species and to have a clear idea about the coastal environment of Western France during the Cretaceous.

Julien Guillaume | alfa
Further information:
http://www.cnrs.fr

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>