Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine pest provides advances in maritime anti-fouling and biomedicine

31.07.2014

A team of biologists, led by Clemson University associate professor Andrew S. Mount, performed cutting-edge research on a marine pest that will pave the way for novel anti-fouling paint for ships and boats and also improve bio-adhesives for medical and industrial applications.

The team’s findings, published in Nature Communications, examined the last larval stage of barnacles that attaches to a wide variety of surfaces using highly versatile, natural, possibly polymeric material that acts as an underwater heavy-duty adhesive.


PhD. candidate Beth Falwell prepares a sample.

“In previous research, we were trying to understand how barnacle adhesives were interacting with surfaces of different chemistries,” said Mount, an author on the journal article and founder and director of the Okeanos Research Laboratory in Clemson’s department of biological sciences. “Most biofouling researchers assume that cyprid larval adhesive plaques are primarily composed of proteins and peptides, but we discovered that lipids are also present, which means that the composition of the permanent adhesive is far more complicated that previously realized.”

The torpedo-shaped cyprid larvae is the last larval stage before the animal undergoes metamorphosis to become the familiar barnacle seen on pilings and jetties along the coast. Once the cyprid has found a potentially suitable spot, it cements itself permanently in place and then undergoes metamorphosis to become an adult calcareous barnacle.

In order to survive and reproduce, benthic — or bottom-dwelling — marine invertebrates like barnacles need to attach themselves in close proximity to each other. These organisms have evolved an array of adhesion mechanisms that allow them to attach virtually anywhere, including nuclear submarines, maritime ships and offshore drilling rigs, and even to animals like turtles and whales.

“The ability of barnacles to adhere to surfaces that have very different physical and chemical properties is unique and provides insight into the unique physic-chemical properties of their larval adhesive,” Mount said.

With funding from the Office of Naval Research, the researchers built a two-photon microscopy system and, in collaboration with Marcus Cicerone at the National Institute of Standards and Technology, employed his innovative technique known as Broadband Coherent Anti-Stokes Raman Scattering to delineate the two different phases of the barnacle cyprid adhesive plaque.

“Using these techniques, we found that the permanent adhesive is made up of two phases: a lipid phase and a protein phase,” said Mount. “The lipid phase is released first. We believe that this lipid phase protects the protein phase from excess hydration and the damaging effects of seawater, and it may limit the protein phase from spreading too thin and losing its ability to securely adhere the larvae to a surface.”

This is the first finding of functional roles of lipids in marine bioadhesives.

“The application of both two-photon microscopy and broadband coherent anti-Stokes Raman scattering clearly demonstrated the role of lipids, which we traced back to the cement glands and showed that they are produced and contained in a separate subsets of cells,” he said.

The researchers’ renewed understanding of barnacle cyprid adhesives will advance anti-fouling coatings for the maritime industry in the years to come and help develop a new class of bio-adhesives for medical and industrial applications.

Clemson University
Ranked No. 21 among national public universities, Clemson University is a major, land-grant, science- and engineering-oriented research university that maintains a strong commitment to teaching and student success. Clemson is an inclusive, student-centered community characterized by high academic standards, a culture of collaboration, school spirit and a competitive drive to excel.

This material is based upon work supported by the Office of Naval Research under grant numbers N00014-11-1-0183 and N00014-11-1-0784 Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Office of Naval Research.

Andrew S. Mount | Eurek Alert!
Further information:
http://newsstand.clemson.edu/mediarelations/study-marine-pest-provides-advances-in-maritime-anti-fouling-and-biomedicine/

Further reports about: Broadband Communications Institute Marine Naval animals biomedicine larvae mechanisms protein proteins surfaces

More articles from Life Sciences:

nachricht More than just a mechanical barrier – epithelial cells actively combat the flu virus
04.05.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>