Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Marine Nitrogen Cycle - Revisited

03.03.2009
Predicting the ocean's role for global climate requires a profound understanding of the cycling of matter in the sea. Regarding nitrogen losses, scientists were apparently off the mark. A novel study reveals the complex interactions in the nitrogen cycle of the Eastern Tropical South Pacific oxgen minimum zone.

Induced by global warming, regions of oxygen-poor water - so-called oxgen minimum zones - are expanding in the world's oceans. That has significant consequences on the marine habitat and fisheries, as higher organisms avoid these regions.

The global elemental cycles of carbon and nitrogen are closely linked to oxgen minimum zones. Therefore, detailed knowledge of these cycles is essential for predicting the effects of climate change on the oceans as well as possible feedback mechanisms. A study by an international group of scientists around Phyllis Lam from the Max-Planck-Institute for Marine Microbiolgy in Bremen, Germany, published in the journal "PNAS", brings us a big step closer to this understanding.

The scientists concentrated on the nitrogen cycle of the Peruvian oxgen minimum zone in the eastern Tropical South Pacific. This region is one out of three regoins in the world's oceans where nitrogen escapes from seawater. "For a long time, this loss was attributed to denitrification, which transforms nitrate to gaseous nitrogen, which can then escape to the atmosphere", Lam explains. "This picture is changing: Apparently, the so-called anammox-bacteria are responsible for the major part of the lost nitrogen. However, up to now it has been unclear where the anammox-bacteria obtain their resources for this transformation." Moreover, the lack of denitrification strongly questions our understanding of the closely-linked carbon cycle - if not by denitrification, how else is organic matter degraded in these oxygen-depleted waters?

Lam's results shake the previous assumptions about the nitrogen cycle in the Peruvian oxygen minimum zone. Experiments as well as molecular analyses show that several processes (presenting the layman with quite some technical terms) are involved: The major proportion of nitrogen is indeed lost through Anammox. It is directly coupled to nitrate reduction and aerobic ammonia oxidation (the first step of nitrification) for sources of NO2-.

The NH4+ required by anammox originates from dissimilatory nitrate reduction (DNRA) and remineralization of organic matter via nitrate reduction and likely microaerobic respiration. The importance of the single processes varies between shelf and open ocean settings as well as the depth layers of the OMZ. Besides, the finding of DNRA itself is also surprising, because up till now, it has generally been considered insignificant in the open ocean.

Therewith, Lam and her colleagues challenge the prevailing opinion that nitrate from the deep sea is responsible for all the nitrogen losses from the Ocean. Its fraction sums up to only about 50 percent, while the remaining losses were attributed to remineralized nitrogen (originating from organic material).

Hitherto existing calculations of nitrogen losses, relying only on measurements of the nitrate deficit, may therefore have substantially underestimated the effective losses from the Ocean - particularly if the same applies to the other OMZs in the world. "Especially the role of remineralized nitrogen needs to be reconsidered". Lam points out, "That is the only way to enable reliable predictions about the future role of the oceans for global climate."

Background 1: The marine nitrogen cycle

All lives on Earth depend on nitrogen, as it is essential for the making of cell components such as proteins and DNA. However, organisms can't use all forms of nitrogen, therefore only a part of the nitrogen present in the ocean determines the productivity of the whole ecosystem. The conversion of different forms of nitrogen is carried out by specialized microorganisms.

In the ocean, nitrogen in the form of ammonium (NH4+) is mainly set free by the degradation of organic matter. In a central step known as nitrification, ammonium is being transferred to nitrite (NO2-) and subsequently to nitrate (NO3-). This process consumes oxygen. With several intermediate steps, the nitrate is subsequently transformed to elemental nitrogen (gaseous nitrogen, N2) in the absence of oxygen. This reaction is termed denitrification. All transformations are mediated by microorganisms. The gaseous N2 bubbles up and leaves the ocean. A few years ago, scientists at the Max Planck Institute in Bremen discovered the process of anaerobic oxidation of ammonium (ANAMMOX) in the oceans. In this process, anammox-bacteria transform ammonium directly with nitrite to gaseous nitrogen (N2) under oxygen-free conditions.

Background 2: Oxygen Minimum Zones

The Oxgen Minimum Zone (OMZ) is an oxygen-depleted layer of water, usually in 200 to 1000 m water depth. Although oxygen minimum zone waters constitute only about 0.1% of the total ocean volume in the world, 20-40% of total oceanic nitrogen loss is estimated to occur therein.

Background 3: The methods

For their analyses, Lam and her colleagues used the stable isotope of nitrogen (15N), allowing them to trace single transformations in high detail. Furthermore, they analysed the parallel gene expression - that is, when organisms are signalling their cell machineries to build the required enzymes.

Fanni Aspetsberger

For further information please contact:
Dr. Phyllis Lam Tel. +49 (0)421 2028 644; plam@mpi-bremen.de
or the MPI press officers:
Dr. Manfred Schlösser Tel. +49 (0)421 2028 704; mschloes@mpi-bremen.de
Dr. Fanni Aspetsberger Tel. +49 (0)421 2028 704; faspetsb@mpi-bremen.de
Original article: Revising the Nitrogen Cycle in the Peruvian Oxygen Minimum Zone. Phyllis Lam, Gaute Lavik, Marlene M. Jensen, Jack van de Vossenberg, Markus Schmid, Dagmar Woebken, Dimitri Gutiérrez, Rudolf Amann, Mike S. M. Jetten and Marcel M. M. Kuypers. Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.0812444106
Participating institutions:
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany.
Microbiology, IWWR, Radboud University Nijmegen, Nijmegen, the Netherlands.
Dirección de Investigaciones Oceanográficas, Instituto del Mar del Perú, Esquina Gamarra y General Valle S/N Chucuito Callao, Peru.

Dr. Fanni Aspetsberger | Max-Planck-Gesellschaft
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>