Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine fungi contain promising anti-cancer compounds

28.10.2015

A Kiel-based research team has identified fungi genes that can develop anti-cancer compounds

To date, the ocean is one of our planet's least researched habitats. Researchers suspect that the seas and oceans hold an enormous knowledge potential and are therefore searching for new substances to treat diseases here.


Colonies of Scopulariopsis brevicaulis after roughly seven days of cultivation.

Photo: Linda Paun

In the EU "Marine Fungi" project, international scientists have now systematically looked for such substances specifically in fungi from the sea, with help from Kiel University and the GEOMAR Helmholtz Centre for Ocean Research Kiel.

A particularly promising finding is the identification of the genes of one of these fungi, which are responsible for the formation of two anti-cancer compounds - so-called cyclic peptides. A research team headed by Professor Frank Kempken, Head of the Department of Genetics and Molecular Biology in Botany at Kiel University, has now published these new findings in the current edition of PLOS One.

They studied a strain of Scopulariopsis brevicaulis, isolated from a marine sponge found in the Mediterranean Sea. Previous research has shown that the fungus can form the cyclic peptides scopularides A and B, which can inhibit the growth of pancreatic and colon tumour cells. Cyclic peptides have been at the centre of the search for medical substances for a while now.

A whole series of these proteins, formed by bacteria and fungi, amongst other things, have already proven themselves in various aspects of human therapy. Certain antibiotics such as Penicillin also belong to this group, for example.

Until now, however, it was not known which genes in the fungus are responsible for forming anti-cancer compounds. Using genome analysis, the researchers in Kiel were now able to identify NRPS 1 and PKS 2 from the roughly 16,000 eligible genes from the fungus. This gene pair forms the scopularides A and B. This makes it possible to synthetically produce the peptides and alter them in terms of ideal effectiveness.

"Fungi are capable of producing a wide range of different substances, depending on the external conditions. Our challenge lies in recognising the right circumstances for forming a possible compound as well as the genes involved. We have managed to do this, in this case, by identifying the genetic origin of the potential anti-cancer peptides", says Kempken on the importance of these research findings.

The researchers received the fungi cultures that they studied from the collection of the former Kiel Center for Marine Natural Products at GEOMAR (KiWiZ, now the GEOMAR-Biotech), which also deals with the search for marine agents. Professor Johannes F. Imhoff discovered the fungus during a microbiome analysis of the Tethya aurantium sponge. The sponge seemed to provide a setting in its middle that would enable the fungus to survive in the marine environment.

Kempken's research team then sequenced the genome from Scopulariopsis brevicaulis using three different methods. "When identifying the genes, it was helpful that fungi form so-called gene clusters. Genes that have the same function are close together in these organisms", says Dr Abhishek Kumar, former post-doctoral researcher in the Department of Genetics and Molecular Biology in Botany at Kiel University and current scientist at the DKFZ German Cancer Research Center in Heidelberg. The compounds from the marine fungus were able to inhibit the growth of certain pancreatic and colon tumour cells in a cell culture. Further intensive research is necessary, however, in order to discover whether the substances are suitable for human therapies.

Original publication:
Abhishek Kumar, Bernard Henrissat, Mikko Arvas, Muhammad Fahad Syed, Nils Thieme, J. Philipp Benz, Jens Laurids Sørensen, Eric Record, Stefanie Pöggeler, Frank Kempken (2015): De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster, PLOS Biology.
Link: http://dx.doi.org/10.1371/journal.pone.0140398

Contact:
Prof. Frank Kempken
Abteilung Genetische Botanik und Molekularbiologie
Botanisches Institut und Botanischer Garten, CAU Kiel
Tel.: +49 (0)431/-880-4274
E-mail: fkempken@bot.uni-kiel.de

More information:
Department of Genetics and Molecular Biology in Botany
Botanical Institute and Botanical Gardens, Kiel University
http://www.uni-kiel.de/Botanik/Kempken/fbkem.shtml

Research focus “Kiel Life Science”, Kiel University
http://www.kls.uni-kiel.de

EU Cooperation project “Marine Fungi”:
https://www.marinefungi.eu/de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>