Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine fungi contain promising anti-cancer compounds

28.10.2015

A Kiel-based research team has identified fungi genes that can develop anti-cancer compounds

To date, the ocean is one of our planet's least researched habitats. Researchers suspect that the seas and oceans hold an enormous knowledge potential and are therefore searching for new substances to treat diseases here.


Colonies of Scopulariopsis brevicaulis after roughly seven days of cultivation.

Photo: Linda Paun

In the EU "Marine Fungi" project, international scientists have now systematically looked for such substances specifically in fungi from the sea, with help from Kiel University and the GEOMAR Helmholtz Centre for Ocean Research Kiel.

A particularly promising finding is the identification of the genes of one of these fungi, which are responsible for the formation of two anti-cancer compounds - so-called cyclic peptides. A research team headed by Professor Frank Kempken, Head of the Department of Genetics and Molecular Biology in Botany at Kiel University, has now published these new findings in the current edition of PLOS One.

They studied a strain of Scopulariopsis brevicaulis, isolated from a marine sponge found in the Mediterranean Sea. Previous research has shown that the fungus can form the cyclic peptides scopularides A and B, which can inhibit the growth of pancreatic and colon tumour cells. Cyclic peptides have been at the centre of the search for medical substances for a while now.

A whole series of these proteins, formed by bacteria and fungi, amongst other things, have already proven themselves in various aspects of human therapy. Certain antibiotics such as Penicillin also belong to this group, for example.

Until now, however, it was not known which genes in the fungus are responsible for forming anti-cancer compounds. Using genome analysis, the researchers in Kiel were now able to identify NRPS 1 and PKS 2 from the roughly 16,000 eligible genes from the fungus. This gene pair forms the scopularides A and B. This makes it possible to synthetically produce the peptides and alter them in terms of ideal effectiveness.

"Fungi are capable of producing a wide range of different substances, depending on the external conditions. Our challenge lies in recognising the right circumstances for forming a possible compound as well as the genes involved. We have managed to do this, in this case, by identifying the genetic origin of the potential anti-cancer peptides", says Kempken on the importance of these research findings.

The researchers received the fungi cultures that they studied from the collection of the former Kiel Center for Marine Natural Products at GEOMAR (KiWiZ, now the GEOMAR-Biotech), which also deals with the search for marine agents. Professor Johannes F. Imhoff discovered the fungus during a microbiome analysis of the Tethya aurantium sponge. The sponge seemed to provide a setting in its middle that would enable the fungus to survive in the marine environment.

Kempken's research team then sequenced the genome from Scopulariopsis brevicaulis using three different methods. "When identifying the genes, it was helpful that fungi form so-called gene clusters. Genes that have the same function are close together in these organisms", says Dr Abhishek Kumar, former post-doctoral researcher in the Department of Genetics and Molecular Biology in Botany at Kiel University and current scientist at the DKFZ German Cancer Research Center in Heidelberg. The compounds from the marine fungus were able to inhibit the growth of certain pancreatic and colon tumour cells in a cell culture. Further intensive research is necessary, however, in order to discover whether the substances are suitable for human therapies.

Original publication:
Abhishek Kumar, Bernard Henrissat, Mikko Arvas, Muhammad Fahad Syed, Nils Thieme, J. Philipp Benz, Jens Laurids Sørensen, Eric Record, Stefanie Pöggeler, Frank Kempken (2015): De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster, PLOS Biology.
Link: http://dx.doi.org/10.1371/journal.pone.0140398

Contact:
Prof. Frank Kempken
Abteilung Genetische Botanik und Molekularbiologie
Botanisches Institut und Botanischer Garten, CAU Kiel
Tel.: +49 (0)431/-880-4274
E-mail: fkempken@bot.uni-kiel.de

More information:
Department of Genetics and Molecular Biology in Botany
Botanical Institute and Botanical Gardens, Kiel University
http://www.uni-kiel.de/Botanik/Kempken/fbkem.shtml

Research focus “Kiel Life Science”, Kiel University
http://www.kls.uni-kiel.de

EU Cooperation project “Marine Fungi”:
https://www.marinefungi.eu/de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>