Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine biomedicine researchers decode structure of promising sea compound

31.08.2009
Novel natural product yielding potential new ways to fight diseases

Scientists at Scripps Institution of Oceanography at UC San Diego and their colleagues at Creighton University have deciphered the highly unusual molecular structure of a naturally produced, ocean-based compound that is giving new understanding of the function of mammalian nerve cells.

The findings are reported in the Aug. 27 online version of the journal Chemistry & Biology by principal co-investigators William Gerwick, professor of oceanography and pharmaceutical sciences at the Center for Marine Biotechnology and Biomedicine (CMBB) at Scripps Institution of Oceanography and UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences and Thomas Murray, professor and chair of pharmacology at the Creighton University School of Medicine in Omaha, Neb.

Scripps scientists collected cyanobacteria, tiny photosynthetic sea organisms, in Hoia Bay off Papua New Guinea in 2002 and recently discovered that the bacteria produce a compound with a structure previously unseen in biomedicine.

The compound, which the researchers have dubbed hoiamide A, offers a novel template for drug development.

"We have seen some of hoiamide A's features in other molecules, but separately," said Alban Pereira, a postdoctoral researcher in Scripps' CMBB and a paper coauthor. "We believe this new template may be important because it's showing different mechanisms of action—different ways to interact with neurons, possibly with a good therapeutic effect for such diseases as epilepsy, hypoxia-ischemia and several neurodegenerative disorders."

In pharmacological tests conducted at Creighton University, Hoiamide A was shown to interact with the same important therapeutic target as analgesic, antiarrhythmic, antiepileptic and neuroprotective drugs.

Dan Edwards and Luke Simmons, former members of Gerwick's laboratory, collected a mixture of cyanobacteria species Lyngbya majuscula and Phormidium gracile in May 2002 at five- to 10-meters (16 to 33 feet) depth from Hoia Bay. Extractions of this sample were shown to have intriguing neurochemical properties in assays run at Creighton University's School of Medicine. Gerwick and Murray's laboratories then collaborated to isolate the neuroactive substance and characterize its extraordinarily complex chemical structure.

"Classically, what we know about the workings of the human nervous system has come largely from studies of different toxins on the function of model systems, such as in this case, the action of hoiamide A on nerve cells in petri dish cultures," said Gerwick. "The toxins serve as 'molecular tools' for manipulating cells at an extremely microscopic scale. Ultimately, by understanding how neurons work at this detailed level, and having a set of tools such as hoiamide A, we can envision the development of new, more effective treatments for such diverse conditions as epilepsy, pain control and memory and cognition enhancement. The natural world still has many valuable molecules left for us to discover and hopefully develop into new classes of medicines."

In addition to Pereira, Gerwick and Murray, the paper was coauthored by Zhengyu Cao of Creighton University.

The study was supported by the National Institutes of Health.

Note to broadcast and cable producers: UC San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or e-mail the media contact listed above to arrange an interview.

Scripps Institution of Oceanography: scripps.ucsd.edu

Scripps News: scrippsnews.ucsd.edu

Scripps Institution of Oceanography, at UC San Diego, is one of the oldest, largest and most important centers for global science research and education in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $155 million from federal, state and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Scientists decipher key principle behind reaction of metalloenzymes
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht New method to map miniature brain circuits
15.01.2018 | The Francis Crick Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>