Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine bacteria are natural source of chemical fire retardants

30.06.2014

Researchers at the University of California, San Diego School of Medicine have discovered a widely distributed group of marine bacteria that produce compounds nearly identical to toxic man-made fire retardants.

Among the chemicals produced by the ocean-dwelling microbes, which have been found in habitats as diverse as sea grasses, marine sediments and corals, is a potent endocrine disruptor that mimics the human body's most active thyroid hormone.


Some marine bacteria produce potent persistent organic compounds that are nearly identical to flame retardant chemicals.

Credit: UC San Diego School of Medicine

The study is published in the June 29 online issue of Nature Chemical Biology.

"We find it very surprising and a tad alarming that flame retardant-like chemicals are biologically synthesized by common bacteria in the marine environment," said senior author Bradley Moore, PhD, a professor at the UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and Scripps Institution of Oceanography.

The toxic compounds are known as polybrominated diphenyl ethers (PBDEs), a subgroup of brominated flame retardants that are combined into foam, textiles and electronics to raise the temperature at which the products will burn.

Certain formulations of PBDEs are no longer used in automobile and home products in the United States, but testing by the Environmental Protection Agency indicates that most Americans and Canadians carry traces of the chemicals. Indeed, levels exceed those of Europeans and others by a factor of ten or more. Californians, in particular, have higher than average "body burdens" of the compounds.

Although the presence, persistence and ability of PBDEs to accumulate in the fatty tissues of marine animals have long been recognized, researchers had previously believed the compounds were anthropogenic in origin and due to ocean pollution.

More recent examinations have shown a pervasiveness of PBDEs in prey and predatory species, suggesting a natural microbial source of the compounds as well as an anthropogenic one.

The study is the first to isolate and identify bacteria that synthesize these compounds and whose presence may help explain the observed distribution pattern of PBDEs in the marine food chain.

In the study, the researchers identified a group of ten genes involved in the synthesis of more than 15 bromine-containing polyaromatic compounds, including some PBDEs. They have since conducted DNA sequencing analyses that will allow them to probe the ocean for other biological sources for these chemicals and to begin to assemble a complete picture of their human health risk.

"The next step is to look more broadly in the marine environment for the distribution of this gene signature and to document how these compounds are entering the food chain," said Vinayak Agarwal, PhD, a postdoctoral researcher with the Scripps Center for Oceans and Human Health at UC San Diego.

###

Co-authors include Abrahim El Gamal, Kazuya Yamanaka, Roland Kersten, Dennis Poth, Michelle Schorn, and Eric Allen, all at UCSD.

Funding for this study was provided, in part, by the National Science Foundation (grant OCE-1313747) and National Institute of Environmental Health Sciences (grant P01-ES021921) through its Oceans and Human Health program.

Scott LaFee | Eurek Alert!

Further reports about: Environmental Marine PBDEs Scripps analyses bacteria chemicals compounds hormone textiles

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>