Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine bacteria are natural source of chemical fire retardants

30.06.2014

Researchers at the University of California, San Diego School of Medicine have discovered a widely distributed group of marine bacteria that produce compounds nearly identical to toxic man-made fire retardants.

Among the chemicals produced by the ocean-dwelling microbes, which have been found in habitats as diverse as sea grasses, marine sediments and corals, is a potent endocrine disruptor that mimics the human body's most active thyroid hormone.


Some marine bacteria produce potent persistent organic compounds that are nearly identical to flame retardant chemicals.

Credit: UC San Diego School of Medicine

The study is published in the June 29 online issue of Nature Chemical Biology.

"We find it very surprising and a tad alarming that flame retardant-like chemicals are biologically synthesized by common bacteria in the marine environment," said senior author Bradley Moore, PhD, a professor at the UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and Scripps Institution of Oceanography.

The toxic compounds are known as polybrominated diphenyl ethers (PBDEs), a subgroup of brominated flame retardants that are combined into foam, textiles and electronics to raise the temperature at which the products will burn.

Certain formulations of PBDEs are no longer used in automobile and home products in the United States, but testing by the Environmental Protection Agency indicates that most Americans and Canadians carry traces of the chemicals. Indeed, levels exceed those of Europeans and others by a factor of ten or more. Californians, in particular, have higher than average "body burdens" of the compounds.

Although the presence, persistence and ability of PBDEs to accumulate in the fatty tissues of marine animals have long been recognized, researchers had previously believed the compounds were anthropogenic in origin and due to ocean pollution.

More recent examinations have shown a pervasiveness of PBDEs in prey and predatory species, suggesting a natural microbial source of the compounds as well as an anthropogenic one.

The study is the first to isolate and identify bacteria that synthesize these compounds and whose presence may help explain the observed distribution pattern of PBDEs in the marine food chain.

In the study, the researchers identified a group of ten genes involved in the synthesis of more than 15 bromine-containing polyaromatic compounds, including some PBDEs. They have since conducted DNA sequencing analyses that will allow them to probe the ocean for other biological sources for these chemicals and to begin to assemble a complete picture of their human health risk.

"The next step is to look more broadly in the marine environment for the distribution of this gene signature and to document how these compounds are entering the food chain," said Vinayak Agarwal, PhD, a postdoctoral researcher with the Scripps Center for Oceans and Human Health at UC San Diego.

###

Co-authors include Abrahim El Gamal, Kazuya Yamanaka, Roland Kersten, Dennis Poth, Michelle Schorn, and Eric Allen, all at UCSD.

Funding for this study was provided, in part, by the National Science Foundation (grant OCE-1313747) and National Institute of Environmental Health Sciences (grant P01-ES021921) through its Oceans and Human Health program.

Scott LaFee | Eurek Alert!

Further reports about: Environmental Marine PBDEs Scripps analyses bacteria chemicals compounds hormone textiles

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>