Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marine algae: Short Circuit in the Food Web

09.07.2014

Chemists of Jena University shed light upon mechanisms of viral diseases of marine algae

Together with scientists of the Weizman Institute in Israel the team around Prof. Pohnert has analyzed the complex interaction between the algae Emiliania huxleyi and viruses. In the science magazine ‘The Plant Cell’ the researchers describe how they could clarify the molecular mechanisms of the relationship between the virus and the algae, which crucially influences the food chain of the oceans

They are amongst the most numerous inhabitants of the sea: tiny haptophytes of the type Emiliania huxleyi. Not visible to the naked eye, when they are in bloom in spring, they form square kilometer sized patches, they are even visible on satellite images.

“Together with other phytoplankton, Emiliania huxleyi is responsible for approximately half of the global photosynthesis output,” states Prof. Dr. Georg Pohnert of the Friedrich Schiller University Jena (Germany). In the process the greenhouse gas carbon dioxide – CO2 – is extracted from the atmosphere and oxygen is set free. “Additionally the microalgae use CO2 to produce tiny calcified discs which re-enforce their outer skin,” the chair for Instrumental Analysis and Bio-organic Analysis continues. Thus the unicellular algae are a decisive factor for a stable world climate.

However the annual bloom of Emiliania huxleyi regularly comes to a rapid ending: the algae are massively affected by viruses and thus die off. Until now it remained unclear exactly how the viruses killed the algae. But together with scientists of the Weizman Institute in Israel the team around Prof. Pohnert has now analyzed the complex interaction between the algae and the viruses. In the science magazine ‘The Plant Cell’ the researchers describe how they could clarify the molecular mechanisms of the relationship between the virus and the algae, which crucially influences the food chain of the oceans. (DOI: 10.1105/tpc.114.125641).

To find this out, the researchers infected algae in controlled conditions in a laboratory and afterwards analyzed the whole metabolism of the microalgae. “The viruses intervene massively with the metabolism of the algae,” Pohnert sums up the results. So for instance they use chemical components of the algae to multiply themselves, because for viruses replication is only possible with the active help of a host organism.

“The viruses prompt the algae to produce exactly the molecular components which they, the viruses, need for themselves,” Pohnert says. As early as one hour after the beginning of the infection the viruses completely turned the metabolism of the algae upside down. The algae then increase the production of certain sphingolipids, which the viruses need to multiply. After a few hours the infected algae burst and each one sets free about 500 new viruses.

But the micro algae don’t succumb to their fate without a fight, as the scientists were able to show in their new study. “They fight back by drastically reducing the biosynthesis of so-called terpenes,” Pohnert explains. The viruses also rely on these hydrocarbons. If their production is switched off by so-called inhibitors in model experiments, the production of viruses decreases distinctly.

The Jena researchers and their Israeli colleagues are now planning to double-check their results from the laboratory in real life – in the sea. Emiliania huxleyi and its viruses thereby serve as a model system to better our understanding of the marine food chain. Until recently, the food web of the oceans was mostly considered a linear organization, according to Prof. Pohnert: Algae, which store solar energy and combine with CO2, are the basic food resource for small animals and fish, which in turn are being eaten by bigger fish. The viruses however create a kind of ‘short circuit’ in this chain.

“Thus the viruses divert a substantial part of the whole fixed carbon from the food chain as we know it so far, and supply deep sea bacteria with it,” Pohnert says. Which consequences this will have for other organisms in the sea and the whole ecological system will be shown by future studies.

Original Publication:
Rosenwasser S et al. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean, The Plant cell 2014, DOI: 10.1105/tpc.114.125641

Contact:
Prof. Dr. Georg Pohnert
Institute for Inorganic and Analytical Chemistry Bioorganic Analytics
Friedrich Schiller University Jena
Lessingstraße 8, 07743 Jena
Germany
Phone:++49 3641 948170
Email: Georg.Pohnert[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Further reports about: Analysis CO2 Cell Emiliania Emiliania huxleyi Marine Photosynthesis marine algae metabolism oceans viruses

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>