Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Marine algae: Short Circuit in the Food Web


Chemists of Jena University shed light upon mechanisms of viral diseases of marine algae

Together with scientists of the Weizman Institute in Israel the team around Prof. Pohnert has analyzed the complex interaction between the algae Emiliania huxleyi and viruses. In the science magazine ‘The Plant Cell’ the researchers describe how they could clarify the molecular mechanisms of the relationship between the virus and the algae, which crucially influences the food chain of the oceans

They are amongst the most numerous inhabitants of the sea: tiny haptophytes of the type Emiliania huxleyi. Not visible to the naked eye, when they are in bloom in spring, they form square kilometer sized patches, they are even visible on satellite images.

“Together with other phytoplankton, Emiliania huxleyi is responsible for approximately half of the global photosynthesis output,” states Prof. Dr. Georg Pohnert of the Friedrich Schiller University Jena (Germany). In the process the greenhouse gas carbon dioxide – CO2 – is extracted from the atmosphere and oxygen is set free. “Additionally the microalgae use CO2 to produce tiny calcified discs which re-enforce their outer skin,” the chair for Instrumental Analysis and Bio-organic Analysis continues. Thus the unicellular algae are a decisive factor for a stable world climate.

However the annual bloom of Emiliania huxleyi regularly comes to a rapid ending: the algae are massively affected by viruses and thus die off. Until now it remained unclear exactly how the viruses killed the algae. But together with scientists of the Weizman Institute in Israel the team around Prof. Pohnert has now analyzed the complex interaction between the algae and the viruses. In the science magazine ‘The Plant Cell’ the researchers describe how they could clarify the molecular mechanisms of the relationship between the virus and the algae, which crucially influences the food chain of the oceans. (DOI: 10.1105/tpc.114.125641).

To find this out, the researchers infected algae in controlled conditions in a laboratory and afterwards analyzed the whole metabolism of the microalgae. “The viruses intervene massively with the metabolism of the algae,” Pohnert sums up the results. So for instance they use chemical components of the algae to multiply themselves, because for viruses replication is only possible with the active help of a host organism.

“The viruses prompt the algae to produce exactly the molecular components which they, the viruses, need for themselves,” Pohnert says. As early as one hour after the beginning of the infection the viruses completely turned the metabolism of the algae upside down. The algae then increase the production of certain sphingolipids, which the viruses need to multiply. After a few hours the infected algae burst and each one sets free about 500 new viruses.

But the micro algae don’t succumb to their fate without a fight, as the scientists were able to show in their new study. “They fight back by drastically reducing the biosynthesis of so-called terpenes,” Pohnert explains. The viruses also rely on these hydrocarbons. If their production is switched off by so-called inhibitors in model experiments, the production of viruses decreases distinctly.

The Jena researchers and their Israeli colleagues are now planning to double-check their results from the laboratory in real life – in the sea. Emiliania huxleyi and its viruses thereby serve as a model system to better our understanding of the marine food chain. Until recently, the food web of the oceans was mostly considered a linear organization, according to Prof. Pohnert: Algae, which store solar energy and combine with CO2, are the basic food resource for small animals and fish, which in turn are being eaten by bigger fish. The viruses however create a kind of ‘short circuit’ in this chain.

“Thus the viruses divert a substantial part of the whole fixed carbon from the food chain as we know it so far, and supply deep sea bacteria with it,” Pohnert says. Which consequences this will have for other organisms in the sea and the whole ecological system will be shown by future studies.

Original Publication:
Rosenwasser S et al. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean, The Plant cell 2014, DOI: 10.1105/tpc.114.125641

Prof. Dr. Georg Pohnert
Institute for Inorganic and Analytical Chemistry Bioorganic Analytics
Friedrich Schiller University Jena
Lessingstraße 8, 07743 Jena
Phone:++49 3641 948170
Email: Georg.Pohnert[at]

Weitere Informationen:

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Further reports about: Analysis CO2 Cell Emiliania Emiliania huxleyi Marine Photosynthesis marine algae metabolism oceans viruses

More articles from Life Sciences:

nachricht Understanding a missing link in how antidepressants work
25.11.2015 | Max Planck Institute of Psychiatry, München

nachricht Plant Defense as a Biotech Tool
25.11.2015 | Austrian Centre of Industrial Biotechnology (ACIB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

Im Focus: Nanocarriers may carry new hope for brain cancer therapy

Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

NASA's Operation IceBridge completes twin polar campaigns

25.11.2015 | Earth Sciences

NASA plans twin sounding rocket launches over Norway this winter

25.11.2015 | Physics and Astronomy

More VideoLinks >>>