Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping state lines

06.09.2010
A network of filamentary conducting paths is behind the transition between insulating and conducting states in complex oxides

When water freezes or boils, its atomic structure undergoes a phase transition in response to temperature change. Phase transitions are common in nature, and have been exploited to make devices such as digital memories.

Complex oxides, which involve multiple cationic elements that enable fine tuning of properties, exhibit a particularly rich set of phase transitions because electrons in these materials are correlated with each other, leading to collective behavior and complex self-organized patterns.

Some phase transitions in complex oxides, including one called ‘colossal magnetoresistance’, can lead to drastic changes in conductivity and magnetism, with potential application to computing devices. However, the mechanisms behind these transitions remain imperfectly understood. Now, Masashi Kawasaki of the RIKEN Advanced Science Institute, Wako, Zhi-Xun Shen of Stanford University, USA, and their colleagues have produced unprecedented images of an important phase transition in a thin film made from the complex oxide, manganite1.

Colossal transition under the microscope

The transition in question is characterized by an increase in the manganite film conductivity by a factor of 10,000 on application of a magnetic field at low temperature, and is an example of colossal magnetoresistance. The resulting transition has been previously characterized in terms of local magnetization, atomic displacement and density of available electronic states. A microscopic and spatially resolved picture of the film conductivity during the transition, however, has proven elusive. This is partly due to the difficulty of measuring large resistivity changes under extreme temperatures and magnetic fields and to the requirement for high-quality films with atomically flat surfaces and distinct phase transition behavior.

Kawasaki, Shen and colleagues solved the first problem by constructing a microwave impedance microscope able to operate over a wide range of temperatures and magnetic fields, but with internal shielding to prevent these conditions from interfering with the measurement. Their microscope works by passing a fine tip over the surface of the manganite film while applying microwave-frequency electrical excitation. This allows it to distinguish between conducting and insulating portions of the film even if they are structurally identical. In addition, the researchers were able to grow high-quality, single-crystal, thin manganite films by using pulsed-laser deposition, allowing phase transitions to be clearly observed.

Networking is important

This combination of an advanced microscope and high-quality thin film allowed the researchers to map the conductivity across a manganite film as it underwent the transition from low to high conductivity. The onset of the high conductivity state was accompanied by the formation of highly conducting manganite filaments aligned along two crystal axes of the underlying substrate made from the strontium titanium oxide (STO). These filaments, which consisted of a highly conducting metallic-like phase of manganite, began to form at very low magnetic fields, below the strengths required for the phase transition to complete, and grew as the magnetic field increased. At very high fields, the filaments formed an interconnected network across which charges could travel, or ‘percolate’. Using a numerical model of the film as a network of random resistors, the team was able to reproduce the observed phase change behavior, confirming the network’s importance.

When the manganite was switched to its insulating state, and then back to its high-conductivity state, the filaments reappeared in the same locations. According to Kawasaki, Shen and colleagues, this suggests that filament direction was not completely random, but was set by disorder and strain in the film, which result from the boundary between the film’s metallic and insulating phases, as well as from strain between the film and the underlying STO substrate. The ordered growth of filaments during the phase transition is reminiscent of the self-organized patterning of snowflakes that accompanies water’s phase change from liquid to solid.

Moving beyond silicon

The observed filament growth represents the first microscopic view of thin film conductivity during the colossal magnetoresistance phase transition, with direct implications for the science in this field. It may also be useful for future ‘post-silicon’ or ‘post-CMOS’ electronic devices. “Most proposed post-CMOS devices mimic existing silicon technologies like diodes and transistors,” says Kawasaki. “The directional nature of the phase separation that we have observed may allow for a completely new method to process and transfer information.” Such a technology would exploit the fact that insulating and metallic phases of the manganite thin film involve different electronic orbitals and can be controlled. Therefore, it may be possible to effectively store information in electron orbitals, rather than in charge quantity or electron spin as is done in other devices. The research team has dubbed this new approach ‘orbitronics’.

In fact, Kawasaki notes that the potential to develop radically new electronics devices is what first sparked the RIKEN team’s interest in manganite thin films. “We were thinking about using electronic phase separation for future electronics,” he explains. “It was a fortuitous meeting with Zhi-Xun Shen at a workshop in Okinawa in 2009 that led to the present work.” Shen had been developing a novel microwave impedance microscope at Stanford and was looking for interesting high-quality films to characterize with it. When the RIKEN team presented their manganite thin film and explained its phase separation properties, Shen had what he wanted.

While the new data may have an immediate impact on the colossal magnetoresistance community, Kawasaki says the RIKEN team’s original focus on new devices has been well served: “This is a step forwards in a long-term basic research program directed towards creating an entirely new kind of electronics.”

About the Researcher

Masashi Kawasaki

Masashi Kawasaki was born in Osaka, Japan, in 1961. He graduated from Department of Synthetic Chemistry, The University of Tokyo, in 1984, and obtained his PhD in 1989 from the same university. After two years postdoctoral research at IBM Thomas J. Watson Research Center in New York, USA, he returned to Japan as a research associate in Tokyo Institute of Technology. He was promoted to associate professor in 1997 there and moved to Institute for Materials Research, Tohoku University as a full professor in 2001. He was co-assigned as the Leader of Functional Superstructure Team of Cross-Correlated Materials Research Group at RIKEN in 2007. His field of research includes optical, electronic, magnetic, and their mutual functionalities at the interfaces made of correlated electron oxides. He has published 490 scientific papers, to which over 17,000 times citation has been recorded (h-index = 62).

Journal information

1. Lai, K., Nakamura, M., Kundhikanjana, W., Kawasaki, M., Tokura, Y., Kelly, M.A. & Shen, Z.-X. Mesoscopic percolating resistance network in a strained manganite thin film. Science 329, 190–193 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/hom/6384
http://www.researchsea.com

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>