Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping the power of networking

17.05.2010
An atlas of protein–protein interactions reveals the collaborative efforts underlying gene regulation in mice and men

Transcription factor (TF) proteins act as switches that turn genes on and off, and the timing and localization of their activity ensures that genes are activated only when and where they are needed—an essential consideration in processes like embryonic development.

However, the TF–gene relationship is seldom simple. “In many cases, TFs work as complexes in which two or more proteins physically interact,” explains Harukazu Suzuki, project director at the RIKEN Omics Science Center, Yokohama, and scientific organizer of the international FANTOM4 Consortium. “Depending on the combination, expression of different sets of genes is regulated; thus, these protein–protein interactions are essential information for analysis of transcriptional network regulation.”

Both research organizations have made it their business to untangle these networks, and new work from Suzuki and collaborators provides a useful foundation for mapping functional TF associations1. The team generated protein-producing clones for a majority of the known transcription factors from humans and mice and used these to perform ‘two-hybrid’ experiments that reveal physical interactions between pairs of proteins in both species. An exhaustive screen of both pools of clones enabled the assembly of an ‘atlas’ of 762 and 877 likely TF–TF interactions in human and mouse, respectively, with subsequent experiments suggesting that these data potentially represent approximately one-quarter of all such interactions.

They then determined where each TF is produced in an effort to classify individual factors as tissue-localized ‘specifiers’ or broadly expressed ‘facilitators’. Further analysis enabled them to identify clusters of interactions associated with different subsets of tissues, revealing a fraction of TF–TF associations that help coordinate the development of embryonic tissue into the diverse range of cell types seen in mature organisms. “We identified a small protein–protein interaction sub-network consisting of only 15 TFs, which plays a crucial role in the regulation of cell fate,” says Suzuki. Strikingly, this network contained mostly promiscuously expressed ‘facilitators’, suggesting that the localization of multi-factor interactions is as important as the restricted expression of individual factors in governing tissue-specific gene expression.

Suzuki and colleagues hope to expand this ‘first draft’ atlas soon, and to explore the clinical implications of disruptions within these interaction networks. “We would like to expand the information to include diseased tissues and cells, and especially cancer,” he says. “[By comparing] these TF interaction networks to normal ones, we may be able to identify TFs involved in these diseases … and the [associated] interactions may offer novel targets for therapy.”

The corresponding author for this highlight is based at the LSA Technology Development Group, RIKEN Omics Science Center

1. Ravasi, T., Suzuki, H., Cannistraci, C.V., Katayama, S., Bajic, V.B., Tan, K., Akalin, A., Schmeier, S., Kanamori-Katayama, M., Bertin, N. et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140, 744–752 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6266
http://www.researchsea.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>