Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping the power of networking

17.05.2010
An atlas of protein–protein interactions reveals the collaborative efforts underlying gene regulation in mice and men

Transcription factor (TF) proteins act as switches that turn genes on and off, and the timing and localization of their activity ensures that genes are activated only when and where they are needed—an essential consideration in processes like embryonic development.

However, the TF–gene relationship is seldom simple. “In many cases, TFs work as complexes in which two or more proteins physically interact,” explains Harukazu Suzuki, project director at the RIKEN Omics Science Center, Yokohama, and scientific organizer of the international FANTOM4 Consortium. “Depending on the combination, expression of different sets of genes is regulated; thus, these protein–protein interactions are essential information for analysis of transcriptional network regulation.”

Both research organizations have made it their business to untangle these networks, and new work from Suzuki and collaborators provides a useful foundation for mapping functional TF associations1. The team generated protein-producing clones for a majority of the known transcription factors from humans and mice and used these to perform ‘two-hybrid’ experiments that reveal physical interactions between pairs of proteins in both species. An exhaustive screen of both pools of clones enabled the assembly of an ‘atlas’ of 762 and 877 likely TF–TF interactions in human and mouse, respectively, with subsequent experiments suggesting that these data potentially represent approximately one-quarter of all such interactions.

They then determined where each TF is produced in an effort to classify individual factors as tissue-localized ‘specifiers’ or broadly expressed ‘facilitators’. Further analysis enabled them to identify clusters of interactions associated with different subsets of tissues, revealing a fraction of TF–TF associations that help coordinate the development of embryonic tissue into the diverse range of cell types seen in mature organisms. “We identified a small protein–protein interaction sub-network consisting of only 15 TFs, which plays a crucial role in the regulation of cell fate,” says Suzuki. Strikingly, this network contained mostly promiscuously expressed ‘facilitators’, suggesting that the localization of multi-factor interactions is as important as the restricted expression of individual factors in governing tissue-specific gene expression.

Suzuki and colleagues hope to expand this ‘first draft’ atlas soon, and to explore the clinical implications of disruptions within these interaction networks. “We would like to expand the information to include diseased tissues and cells, and especially cancer,” he says. “[By comparing] these TF interaction networks to normal ones, we may be able to identify TFs involved in these diseases … and the [associated] interactions may offer novel targets for therapy.”

The corresponding author for this highlight is based at the LSA Technology Development Group, RIKEN Omics Science Center

1. Ravasi, T., Suzuki, H., Cannistraci, C.V., Katayama, S., Bajic, V.B., Tan, K., Akalin, A., Schmeier, S., Kanamori-Katayama, M., Bertin, N. et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140, 744–752 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6266
http://www.researchsea.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>