Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping the power of networking

17.05.2010
An atlas of protein–protein interactions reveals the collaborative efforts underlying gene regulation in mice and men

Transcription factor (TF) proteins act as switches that turn genes on and off, and the timing and localization of their activity ensures that genes are activated only when and where they are needed—an essential consideration in processes like embryonic development.

However, the TF–gene relationship is seldom simple. “In many cases, TFs work as complexes in which two or more proteins physically interact,” explains Harukazu Suzuki, project director at the RIKEN Omics Science Center, Yokohama, and scientific organizer of the international FANTOM4 Consortium. “Depending on the combination, expression of different sets of genes is regulated; thus, these protein–protein interactions are essential information for analysis of transcriptional network regulation.”

Both research organizations have made it their business to untangle these networks, and new work from Suzuki and collaborators provides a useful foundation for mapping functional TF associations1. The team generated protein-producing clones for a majority of the known transcription factors from humans and mice and used these to perform ‘two-hybrid’ experiments that reveal physical interactions between pairs of proteins in both species. An exhaustive screen of both pools of clones enabled the assembly of an ‘atlas’ of 762 and 877 likely TF–TF interactions in human and mouse, respectively, with subsequent experiments suggesting that these data potentially represent approximately one-quarter of all such interactions.

They then determined where each TF is produced in an effort to classify individual factors as tissue-localized ‘specifiers’ or broadly expressed ‘facilitators’. Further analysis enabled them to identify clusters of interactions associated with different subsets of tissues, revealing a fraction of TF–TF associations that help coordinate the development of embryonic tissue into the diverse range of cell types seen in mature organisms. “We identified a small protein–protein interaction sub-network consisting of only 15 TFs, which plays a crucial role in the regulation of cell fate,” says Suzuki. Strikingly, this network contained mostly promiscuously expressed ‘facilitators’, suggesting that the localization of multi-factor interactions is as important as the restricted expression of individual factors in governing tissue-specific gene expression.

Suzuki and colleagues hope to expand this ‘first draft’ atlas soon, and to explore the clinical implications of disruptions within these interaction networks. “We would like to expand the information to include diseased tissues and cells, and especially cancer,” he says. “[By comparing] these TF interaction networks to normal ones, we may be able to identify TFs involved in these diseases … and the [associated] interactions may offer novel targets for therapy.”

The corresponding author for this highlight is based at the LSA Technology Development Group, RIKEN Omics Science Center

1. Ravasi, T., Suzuki, H., Cannistraci, C.V., Katayama, S., Bajic, V.B., Tan, K., Akalin, A., Schmeier, S., Kanamori-Katayama, M., Bertin, N. et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140, 744–752 (2010)

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6266
http://www.researchsea.com

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>