Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping heart disease

02.04.2010
Researchers uncover genes that may dramatically affect heart health

Though heart disease is a major cause of disability and death, very little is understood about its genetic underpinnings.

Recently, an international team of investigators at the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Sanford-Burnham Medical Research Institute (Sanford-Burnham) and other organizations shed new light on the subject.

Studying Drosophila (fruit flies), the team investigated 7061 genes and built a detailed map that shows how a portion of these genes contribute to heart function and disease. Importantly, the researchers identified many genes that had not previously been associated with heart disease. The research is being published as the cover story in the April 2 issue of Cell.

Using RNAi technology—which selectively knocks out genes so researchers can study their function—the team found nearly 500 genes that when inhibited cause flies to experience heart problems while under stress. In particular, the team found that a protein complex called CCR4-Not has a role in heart function. Turning off CCR4-Not complex genes caused heart muscle abnormalities (cardiomyopathies) in both flies and mice. These findings provide new insights into human health, as a common mutation in the human NOT3 gene is associated with a heart condition that often leads to lethal arrhythmias or sudden cardiac death.

"Our work on flies has identified a possible cause of human heart disease that the human genetic screens had missed," said co-lead researcher Dr. Josef Penninger, of IMBA.

The creation of this genetic map is only the beginning. The researchers identified many genes with no known function that may, when malfunctioning, predispose humans to heart disease. Much work needs to be done to determine the mechanisms by which these genes influence heart health.

"We already established that genes responsible for making the heart in fruit flies have a similar role in humans; and now we find that many of the genes that help the heart maintain normal function also prevent heart disease in humans," said co-lead researcher Rolf Bodmer, Ph.D., director of the Development and Aging program at Sanford-Burnham.

This international team included lead scientists from the Institute of Molecular Biotechnology of the Austrian Academy of Sciences (Vienna, Austria), Sanford-Burnham Medical Research Institute and Akita University (Japan). They were assisted by researchers at Tokyo Medical and Dental University, Toronto General Hospital, Keio University School of Medicine (Japan), Strand Life Sciences (Bangalore, India), New York University, Institute of Human Genetics (Munich, Germany), General Central Hospital (Bolzano, Italy) and the University of Lübeck (Germany).

About Sanford-Burnham Medical Research Institute

Sanford-Burnham Medical Research Institute (formerly Burnham Institute for Medical Research) is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Sanford-Burnham, with operations in California and Florida, is one of the fastest-growing research institutes in the country. The Institute ranks among the top independent research institutions nationally for NIH grant funding and among the top organizations worldwide for its research impact. From 1999 – 2009, Sanford-Burnham ranked #1 worldwide among all types of organizations in the fields of biology and biochemistry for the impact of its research publications, defined by citations per publication, according to the Institute for Scientific Information. According to government statistics, Sanford-Burnham ranks #2 nationally among all organizations in capital efficiency of generating patents, defined by the number of patents issued per grant dollars awarded.

Sanford-Burnham utilizes a unique, collaborative approach to medical research and has established major research programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is especially known for its world-class capabilities in stem cell research and drug discovery technologies. Sanford-Burnham is a nonprofit public benefit corporation.

Josh Baxt | EurekAlert!
Further information:
http://www.sanfordburnham.org

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>