Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping a Grass’s Genome to Advance Biofuels Research

16.02.2010
Biologist Samuel Hazen at the University of Massachusetts Amherst is one of more than 100 researchers who collaborated to publish this week in Nature, the entire genome of the model grass commonly known as purple false brome. It is the first member of this economically important grass family to have its DNA fully sequenced.

Hazen’s laboratory is one of 10 funded by the U.S. Department of Energy and U.S. Department of Agriculture in 2008 to accelerate the development of cellulosic biofuels such as the grass Brachypodium distachyon, widely regarded as one of the most promising alternatives on the horizon to reduce the country’s reliance on imported oil and to cut greenhouse gas emissions. UMass Amherst received $1.2 million of the total $10 million awarded two years ago.

The biologist says there are now 12 investigators in several laboratories on the UMass Amherst campus who make up the Brachypodium Consortium. They include microbiologists, plant scientists, chemists and molecular biologists who are “thrashing out the problems” and coming up with new ideas for using this previously overlooked non-food energy crop.

In several ways, Hazen points out, this grass is the opposite of what we desire in a crop — that is, a high-yielding plant. Unlike closely related food crops such as wheat, barley and nonfood energy crops such as switchgrass, B. distachyon is very small and has a short life cycle. But it is easily grown in the laboratory, making it an excellent model for genetic and molecular biology research. For example, biologists can grow a new generation of this grass in three months in the laboratory, compared to up to a full year for other grasses.

Specifically, Hazen and colleagues supplied gene transcript information and annotated the genes as part of the multi-center mapping study. The genome can be characterized as “a very large book that’s been printed without any spaces between the words,” he explains. To fix this monumental comprehension problem, he and colleagues pieced together the genetic words and phrases of the genome one at a time into meaningful “sentences.” Without this organizational step, the genome would not be useful to biological researchers.

Samuel Hazen | Newswise Science News
Further information:
http://www.bio.umass.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>